如图,在半圆O中,AB是直径,CD是一条弦.若AB=10,则△COD面积的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:13:04
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
/>连接AC、BC则∠ACB=90°∵CD⊥AB∴△BCD∽△CAD∴CD²=AD*BD=6*3=18∴CD=3根号2再问:如图,点A、B、C、D都在圆上,弧BD=弧DC,AD与BC相交于点
①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A
连接OB,作OP⊥AB于P.阴影部分的面积=12π•OB2-12π•OP2=12π(OB2-OP2)=12π•BP2=2π.再问:有图了,帮帮忙,谢谢!
(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠
(1)方法一:以O为原点,AB、OD所在直线分别为x轴、y轴建立平面直角坐标系,则点A(-2,0),B(2,0),P(3,1).设双曲线实半轴长为a,虚半轴长为b,半焦距为c,则2a=|PA|−|PB
1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方
1.连接AD.则有∠ADB=90°(直径所对的圆周角)即AD⊥BC因为AB=AC所以BD=BC(等腰三角形底边上的高是底边的平分线)2.等腰三角形底边上的高是顶角的角平分线∠BAC=40°,所以∠BA
因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=
(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC;(2)∵∠ABC=70°,∠ADB=90°,∴∠BAD=20°,∴BD的度数为40°,∵AB=A
再问:为什么那个角等于九十度他没说那是中点不能直接说再答:圆直径所对的角是直角再答:所以三线合一再问:哦哦谢谢再问:哦哦谢谢
郭敦顒回答:(1)条件中没有大圆或小圆半径的数值,求不出半圆中阴影部分的面积,而且也未显示出半圆中阴影部分为何部.(2)不论是否给出了半径的数值和半圆中阴影部分在何处(但必须是弓形部位或两侧部位),若
解题思路:此题考查勾股定理在解题中的应用,利用面积差求三角形的面积解题过程:连接CF,则CF⊥AE∵BE⊥AE∴CF∥BE∴AF/AE=CF/BE=AC/AB设OC=r,则AB=4r∵AE=8∴AF=
(1)连接OA、OB、OF,角AOF=90度根据勾股定理AF^2=OA^2-OF^2=大圆半径^2-小圆半径^2=(1/2AB)^2=(6/2)^2=9阴影部分的面积=1/2(大圆面积-小圆面积)=1
以AB为直径的半圆?请在检查下你的问题.
第一问,连接AD,得角BDA=90度,又三角形ABC为等腰三角形,根据三线合一得AD平分BC,D为BC中点;第二问:DE为圆的切线理由如下:连接DO,DO为三角形ABC的中位线,DO与AC平行,角DE
设圆心o到弦CD的垂线为OG,G为垂足,角
(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D