如图,在△ABC和△ADE中AB=AC,AD=AE,∠BAC=∠DAE=90
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:46:43
1∠CAD=∠DABCD=ABAE=AD△ACD≌△ABDCE=BD2由上题全等得∠ACE=∠ABD所以∠ACB+∠ABC=∠ECB+∠DBC所以∠COB=∠CAB=90°O为CE,BD交点再答:虽然
证明:∵∠BAC=∠DAE,…(3分)∴∠BAC+∠CAD=∠DAE+∠CAD,即∠EAC=∠DAB,…(4分)在△AEC和△ADB中AD=AE∠DAB=∠EACAB=AC,∴△AEC≌△ADB(SA
(1)△ABC∽△ADE,△ABD∽△ACE(2分)(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.(4分)又∵∠ABC=∠ADE,∴
△ABD∽△ACE你已经证明△ABC∽△ADE那么得AB/AC=AD/AE∠BAD=∠CAE△ABD∽△ACE(边角边)
探索,在图1至图3中,已知△ABC的面积为a.50-解决时间:2010-8-2819:15(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD得面积为S1,则S1=______
你想问啥,话说也没看见你的图
根据您的问题,我做出如下回答:因为:∠BAD=∠CAE所以:∠BAD+∠DAC=∠CAE+∠DAC即:∠ABC=∠DAE又因为:∠ABC=∠ADE所以相似.
(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD(SAS),∴BE=CD.②∵△ABE≌△ACD,∴∠ABE=∠ACD,BE=CD,∵M、N分别
相似因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=AB/AC,∠BAD=∠CAE所以△ABD∽
证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵∠A=∠A,∴△ABD∽△ACE,∴ADAE=ABAC,∴ADAB=AEAC,∴△ADE∽△ABC.
(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,C
﹙1﹚∵ad=aeac=ab∠bac=∠dae=90°∴△abd≌△ace﹙sas﹚﹙2﹚∵abd≌△ace∴ce=bd∠dba=∠ace∵M,N分别是BD,CE的中点∴bm=cn∵bm=cn∠dba
分析:(1)∵∠BAC=∠DAE,∴∠BAE=∠CAD,又∵AB=AC,AD=AE,∴△BAE≌△CAD(SAS)∴BE=CD(全等三角形对应边相等)根据全等三角形对应边上的中线相等,可证△AMN是等
∵BC=AC,∴∠A=∠B,∵DE∥BC,∴∠EDA=∠B,∴∠A=∠EDA,∴EA=ED,∴△ADE是等腰三角形,∵DE∥BC,∴∠EDC=∠DCB,∵BC=AC,CD⊥AB,∴CD平分∠ACB,∴
因为∠BAD=∠CAE,所以∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE.在△ABC和△ADE中,因为AC=AE,∠C=∠E,∠BAC=∠DAE,由角边角定理,△ABC≌△ADE.
∠EAD=∠1+∠EAB,∠BAC=∠2+∠EAB因为∠1=∠2,所以∠EAD=∠BAC又∠E=∠B,AC=AD角角边全等定理△ABC≌△ADE
(1)证明:在△ABC和△ADE中∠BAC=∠DAEAB=AD∠B=∠D,∴△ABC≌△ADE;(2)∵△ABC≌△ADE,∴AC=AE,∴∠C=∠AEC=75°,∴∠CAE=180°-∠C-∠AEC
(1)∵∠BAD=∠CAE,∠DAC=∠DAC.∴∠BAC=∠DAE,又∵∠ABC=∠ADE.∴△ABC∽△ADE,(AA)∴AB:AC=AD:AE°∵∠BAD=∠CAE∴△ABD∽ACE(SAS)(