如图,在△ABC中,∠BAD=40°,且AE=AD,求∠EDC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:19:28
∵∠ADC是△ABD的外角,∴∠BAD=∠ADC-∠B,∵∠B=∠C,∴∠BAD=∠ADC-∠C∴∠BAD=(∠ADE+∠CDE)-(∠AED-∠CDE),∵∠ADE=∠AED,∴∠BAD=2∠CDE
(1)△ABC∽△ADE,△ABD∽△ACE(2分)(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.(4分)又∵∠ABC=∠ADE,∴
∵∠ADC是△ABD的外角,∴∠BAD=∠ADC-∠B,∵∠B=∠C,∴∠BAD=∠ADC-∠C∴∠BAD=(∠ADE+∠CDE)-(∠AED-∠CDE),∵∠ADE=∠AED,∴∠BAD=2∠CDE
△ABD∽△ACE你已经证明△ABC∽△ADE那么得AB/AC=AD/AE∠BAD=∠CAE△ABD∽△ACE(边角边)
因为,∠C=90度,三角形内角和180度,所以,∠A(即∠CAB)+∠B+90°.又因为,∠CAB=2∠B,所以2∠B+∠B=90°,即3∠B=90°.由此可得,∠B=30°因为∠CAB=2∠B,所以
(1)在BC上取一点P,使PC=AB,连接FP由AE=CF,∠BAD=∠ACB,∴△BAE≌△PCF(SAS)∴BE=PF∠ABE=∠FPC又∵BE平分∠ABC,∴∠ABE=∠EBC∴∠EBC=∠FP
证明:过点D作DE⊥AB于E,∵DE⊥AB,∴∠AED=90°,∴∠ACB=∠AED=90°,又∵∠CAD=∠BAD,AD=AD,∴△ACD≌△AED,∴CD=ED,AC=AE,∵∠ACB=90°,A
证明:∵四边形ABCD是菱形∴AD//BC(菱形对边平行)∴∠B+∠BAD=180°∵∠BAD=2∠B∴3∠B=180°∠B=60°∵AB=BC(菱形邻边相等)∴△ABC是等边三角形(有一个角是60°
人在听么?再问:什么再答: 再答:懂不懂。?再问:第四行写的是什么再答:角BAF等于二倍的角B
因为∠ADC=∠BAD+∠B(三角形外角性质)∠ADC=70°(已知)所以∠BAD+∠B=70°(等量代换)因为∠BAD=∠B(等边三角形底角相等)所以∠B=1/2*70°=35°
在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形
∵AB=AC,∴∠B=∠C∵∠BAD=∠CAE,∴∠ADE=∠AED,∴AD=AE∴△ADE是等腰三角形.
过D作DE垂直AB于E,DF垂直BC于F,DM垂直AC于M∵DE⊥AB于EDF⊥BC于FDB平分∠ABC∴DE=DF同埋DM=DF∴DE=DM又∵DE⊥AB,DM⊥AC∴DA平分∠BAC
相似因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=AB/AC,∠BAD=∠CAE所以△ABD∽
在△ABC与△ADC中AB=AD,AC=AC,∠ABC=∠ADC(SSA)所以△ABC与△ADC全等所以∠BAD=∠DAC所以AC平分∠BAD如果有不懂的地方可以向我追问,再问:AB=AD,,AC=A
在三角形ABC和三角形ADC中AB=AD,∠ABC=∠ADCAC=AC所以三角形ABC≌三角形ADC(SAS)所以
连接BD,分别过A、C做BD垂线,垂足分别是E、F,已知AB=AD,得三角形ABD为等腰三角形,得∠ABD=∠ADB,E为BD中点,AE平分∠BAD;由∠ABC=∠ADC,∠ABD=∠ADB可得∠CB
如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=∠AED,求∠CDE的度数.考点:三角形的外角性质;三角形内角和定理.分析:在这里首先可以设∠DAE=x°,然后根据三角形的内角和是
∵AB=AD∠BAD=32°∴∠ADB=∠ABD=(180º-32º)/2=74º∵AD=DC∠ADB=∠DAC+∠DCA∴∠DAC=∠DCA=∠ADB/2=37
(1)∵∠BAD=∠CAE,∠DAC=∠DAC.∴∠BAC=∠DAE,又∵∠ABC=∠ADE.∴△ABC∽△ADE,(AA)∴AB:AC=AD:AE°∵∠BAD=∠CAE∴△ABD∽ACE(SAS)(