如图,在⊙O中,弧AB=2弧AC,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:20:48
连接MO交弦AB于点E,(1)∵OH⊥MN,O是圆心,∴MH=12MN,又∵MN=43cm,∴MH=23cm,在Rt△MOH中,OM=4cm,∴OH=OM2−MH2=42−(23)2=2(cm);(2
连结OC交AB于点DC为弧AB的中点,可得CO⊥AB设圆的半径为r对于三角形OAD,有OD^2+AD^2=OA^2对于三角形BCD,有BD^2+CD^2=BC^2DA=DB,可得OA^2-OD^2=B
连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²
证明:(1)连接OD,(1分)∵∠BAC的平分线AD交BC于D,∴∠OAD=∠CAD;又∵∠OAD=∠ODA,∴∠ODA=∠CDA,∴OD∥AC.∵∠ACB=90°,∴OD⊥BC,(3分)∴BC是⊙O
(1)∠AOC=π/3×R/R=π/3(2)∵∠AOC=π/3,OA=OC,∴△AOC是等边三角形,∠CAO=π/3由△AEC≌△DEO,得∠CAE=∠ODE∴AC//OD,∴∠DOB=∠CAO=π/
)∵AC^=π/3R,半圆的长是πR,∴弧AC是半圆是1/3,即弧的度数是60°,∴∠AOC=60°;
到底是哪个角?∠A=75°,题目说了弧AB=弧AC,所以∠B=∠C=(180-75)/2=52.5°
∵C为弧AB的中点,∵AB⊥OC,∵AB=6cm,∴AD=12AB=3cm,设OA=r,则OD=r-CD=r-1,在Rt△AOD中,∵OA2=AD2+OD2,即r2=32+(r-1)2,解得r=5.
(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠
(1)过⊙O的圆心作OE⊥AC,垂足为E,∴AE=12AC=12x,OE=AO2−AE2=25−14x2.∵∠DEO=∠AOB=90°,∴∠D=90°-∠EOD=∠AOE,∴△ODE∽△AOE.∴OD
(1)方法一:以O为原点,AB、OD所在直线分别为x轴、y轴建立平面直角坐标系,则点A(-2,0),B(2,0),P(3,1).设双曲线实半轴长为a,虚半轴长为b,半焦距为c,则2a=|PA|−|PB
因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=
(1)∵弧AB=60°,∴∠AOB=60°又∵OA=OB,∴△OAB是等边三角形,∴OA=AB=6;(2)弧AB的长l=6π×60180=2π;(3)等边△AOB的面积是:3×624=93,S扇形OA
∵OA=OB=AB∴△OAB是等边三角形,∠AOB=60°,OC⊥AB交⊙O于C∴∠AOC=30°∴∠ABC=12∠AOC=15°.故答案为:15.
连接AD∵D是弧BE的中点∴弧BD=弧DE∴∠BAD=∠CAD(等弧对等角)∵直径AB∴∠ADB=90∴AC=AB(三线合一)∴∠C=∠ABC=(180-∠BAC)/2=(180-40)/2=70数学
(1)证明:∵AB=CD,∴AB=CD.∴AB-AD=CD-AD.∴BD=CA.∴BD=CA.在△AEC与△DEB中,∠ACE=∠DBE,∠AEC=∠DEB,∴△AEC≌△DEB(AAS).(2)点B
证明:(1)∵在⊙O中,弦AB=CD,∴弧AB=弧CD,∵弧BC=弧CB,∴弧AC=弧BD;(2)∵弧AC=弧BD,∴∠AOC=∠BOD.
选C画出图后A,B,C三点连成的是三角形,弧AC=弧BC,AC=BC,三角形两边之和大于第三边∴a
:连接AC,BC因为点C为弧AB的中点所以弧AC=弧BC所以AC=BC因为OA=OBOC=OC所以三角形OAC和三角形OBC全等(SSS)所以角AOC=角BOC=1/2角AOB因为OA=OB所以角OA