如图,圆是三角形ABC的外接圆,AB是圆O的直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:14:19
我也是刚做这道题,搜了好久也没搜到答案,不过总算琢磨出来了,希望这个答案能帮助更多的人
已知,E是三角形ABC的内心,可得:∠DAB=∠DAC,∠EBA=∠EBC.因为,∠DBE=∠DBC+∠EBC=∠DAC+∠EBC=∠DAB+∠EBA=∠DEB,所以,DB=DE.因为,∠DAB=∠D
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
连接od交bc于点E,应为D是弧BC的中点所以od垂直bc,所以角deb等于90,应为ab是直径所以角acb为90,所以bc为4根号2,od垂直bc所以be等于2根号2,三角形obe相似三角形abco
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
证明:连接BD,∵AD是圆O的直径∴∠ABD=90°∴∠BAD+∠D=90°∵∠D、∠C所对应圆弧都为劣弧AB∴∠D=∠C∴∠BAD+∠C=90°∵AH⊥BC∴∠CAH+∠C=90°∴∠BAD=∠CA
先过A作BC边上的高垂足为D求出高为4因为三角形是等腰的所以外接圆的圆心必定在这高上先在高上随便取一点设为O连接OB则OB为半径设为ROD=AD-AO=4-RBD=3所以R就等于√(4-R)2+9所以
题目不完整,题目是不是这样?圆O是三角形ABC的外接圆,AD是BC边上的高,已知BD=8,CD=3,AD=6,求圆O的面积为多少?记住定理:设外接圆半径为R,三边长为a,b,c,S为三角形面积则有关系
连BG,CG在直角三角形BHD和直角三角形AHE中,∠AHE=∠BHD(对顶角相等),∠HBD=90度-∠BHD,∠HAE=90度-∠AHE,∠CAH=∠HBD,∠CAG=∠CBG(同弧圆周角相等),
过D作DF∥PB交AB于F.∵PA切⊙O于A,∴由切割线定理,有:PA^2=PC×PB,∴PA/PB=PC/PA,又PC/PA=√2/2,∴PA/PB=√2/2,∴(PA/PB)(PC/PA)=1/2
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
角boc=55*2=110度.同弧所对圆心角是圆周角的二倍.再问:能详细点吗==表示生病了-没去学校再答:顶点在圆心的角,叫做圆心角。圆心角α的取值范围是0°
1.首先证明角EDC=角ABC=角ABC=>DE=EC等腰三角形2.画一条经过D平行于BC的直线,交AB于F,连接FC角DBC=角FDB,角FBD=角DBC,顺便推导出角DFC=角DCF,说明DFC是
反证法假如D不圆上,因为AB是角CAD的角平分线,所以BC不等于BD,与CB=BD相矛盾所以点D是圆上一点
相等.连接BE,则∠E=∠C,∠BAE=90º-∠E,∠DAC=90º-∠C,∴BAE=∠DAC.
∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过
过圆心O作OG垂直BC交BC于G点可知G为BC的中点,因为EF垂直BC,AD垂直BC,所以EF‖OG‖AD,又因为O为AE的中点,得G为DF的中点,所以BF=BG+GF=CG+DG=CD,即BF=CD
你能求出第一问,说明你已经发现AE其实是△ABC外接圆的直径,设外接圆圆心为QQE=r=1.5,DE=0.6∴QD=0.9∵O是外心,而AB=AC∴AO是△ABC的高和中线∴AE⊥BC,BD=CD有勾
1,以CD为半径,A、B、C为圆心画圆,⊙A、⊙C交于M、N,⊙B、⊙C交于P、Q连接MN、PQ,MN交PQ于O,以O为圆心,OC为半径画圆,⊙O即为△ABC的外接圆2,作OE⊥AC于E,延长OE交⊙
1、证明∵AD平分∠BAC∴∠BAD=∠CAD∵∠BAE、∠BCE所对应圆O圆弧均为弧BE∴∠BCE=∠BAD∵∠BCE、∠DFE所对应圆O1圆弧均为弧DE∴∠DFE=∠BCE∴∠DFE=∠CAF∵∠