如图,以三角形ABC的一边AB为直径的半圆与其他两边AC,BC的交点分别为D,E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:42:45
显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.
∵AD=BD,∴∠A=∠ABD(1)又BD=BC,∴∠C=∠BDC(2)∴∠C=2∠A,∠C=∠A+∠CBD,∴∠A=∠CBD=1/2∠C,由∠A+2∠C=180°,5∠A=180°,∴∠A=36°,
当AB是斜边时,则第三个顶点所在的位置有:C、D,E,H四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选D.
当AB是斜边时,则第三个顶点所在的位置有:C、D,E,H四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选D.
(1)连接CE∵∠C=90°、AE=BE∴CE=AE又∵DA=DC∴DE是AC的垂直平分线∴DE∥CB(2)AC=√3BC当AC=√3BC时,∠B=60°∵∠ACD=60°∴∠ACD=∠B∴BE∥CD
按图形,ΔACE是等边三角形.证明:∵ΔACE、ΔBCF为等边三角形,∴CB=CF,CA=CE,∠BCF=∠ACE=60°,∴∠BCF+∠ACF=∠ACE+∠ACF,即∠BCA=∠FCE,∴ΔBCA≌
△BDE是等腰三角形证明:∵△ABC和△ADE都是等边三角形∴AB=AC,AE=AD,∠EAD=∠BAC=60°∴∠BAE=∠CAD∴△ABE≌△ACD∴BE=CD∵AD⊥BC∴BD=CD∴BE=BE
等边三角形各边相等,所以a'=a,b'=bAB^2=a^2+b^2-2abcos∠ACBDE^2=a^2+b^2-2abcos∠DCE=a^2+b^2-2abcos(240-∠ACB)
做ON垂直于CA交CA延长线于N,做OM垂直于BC交BC于M.两三角形全等OMNC为正方形
如图所示:以AB为边的有3个,以BC为边的有1个,以AC为边的有1个,共有5个,故答案为:5.
延长AM至H,使AM=MH,连接BH,CH,则四边形ABHC是平行四边形.图中可以看出角1、2、3`之和为180°,而已知角1、2、3之和为180°,所以∠3=∠3`,加上AB=AE,BH=AC=AG
AB=AM,AN=AC,∵∠ANC=∠ABM,∴∠NAC=∠BAM,【三角形内角和180°】∴∠NAB=∠CAM【两边同减∠BAC】可得△NAB=△CAM(SAS)∴∠NBA=∠CMA若∠ANC=∠A
△BDC≌△AEC∵等边三角形ABC∴BC=AC∵∠BAC=∠DCE∴∠BCD=∠ACE∵等边三角形EDC∴DC=EC∵BC=ACBCD=∠ACEDC=EC∴△BDC≌△AEC(SAS)
利用相似比来证明嘛,DE//BC就有AE/AC=DE/BCGF//BC就有HF/HC=GF/BC因为DE=GF所以AE/AC=HF/HC就得到AH//EF
证明:设这里的切线交AC于F,并设半圆的圆心是O依题意,EF垂直于ACOE也垂直于AC(切线)所以,EF平行于OE因为O是BC的中点所以OE是三角形ABC的中位线所以OE=1/2ACOE=1/2BC(
解题思路:切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解题过程:
△BDC≌△AEC.理由如下:∵△ABC、△EDC均为等边三角形,∴BC=AC,DC=EC,∠BCA=∠ECD=60°.从而∠BCD=∠ACE.在△BDC和△AEC中,BC=AC∠BCD=∠ACEDC
∵∠ABE=∠ABC-∠EBC=60°-∠EBC∠DBC=∠DBE-∠EBC=60°-∠EBC∴∠ABE=∠DBC∵AB=AC,BE=BD∴⊿ABE≌⊿CBD∴AE=CD∵AD=AC+CD∵三角形AB
作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,3).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴可得△ACB≌△BQE,∴AC=BQ=3,∴