如图,○O中,AB是弦,OB OC的圆的直径,角BOC=90 角B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:06:25
如图,○O中,AB是弦,OB OC的圆的直径,角BOC=90 角B
如图,在圆O中,AB是弦,C为弧AB的中点,若BC=2倍的根号3,O到AB的距离为1.求圆O的半径

连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²

如图,AB是同心圆O的直径,CD是同心圆O中非直径的弦,求证:AB>CD

作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C,D重合),求证:

⑴设弧CAD为劣弧.∵AB⊥CD,∴∠OBC=∠OBD,∵OB=OC=OD,∴∠OCB=∠OBC=∠ODB=∠OBD,∵∠P+∠CBD=180°(圆内接四边形对角互补),而∠COB+∠COB+∠OCB

如图,圆o中AB是直径,P是OB中点,AB=8,弦CD交AB于P,∠APC=30度,求CD

过O作OE⊥CD,交CD于E∵直径AB=8∴OB=4∵P是OB中点∴OP=OB/2=4/2=2∵∠APC=30,OE⊥CD∴OE=OP×sin30=2×1/2=1∴CE²=OC²-

如图:在圆O中,P是弦AB上一点,OP⊥PC,PC交圆O于点C,求证:PC^2=PA×PB

由AP·PB,联想到相交弦定理,于是延长CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易证得PC=PD问题得证.

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),

因为CD和AB是垂直的,AB是直径平分CD所以2∠COB=∠CPB,2∠DPB=∠DOB因为弧BD=弧CB,所以∠COB=∠DOB因为2∠CPB=2∠BPD=∠COB所以∠CPD=∠COB∠CP’D+

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠

如图,○O中,AB是直径,弦CD交AB于E点,且CE=OE,则弧BD=------弧AC

2倍.利用等腰三角形两底角相等,然后是圆心角为圆周角2倍,最后弧与圆心角成正比

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD

因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=

如图,在圆O中,AB是圆O的直径,OC⊥AB,D是CO的中点

连接EO,DO=CO/2=EO/2,则角DOE=60度,角AOE=30度,因此CE弧=2EA弧

如图 ,在三角形ABC中AC等于AB,点O是BC的中点,AC切圆O于D,求证:AB是圆O的切线

连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB

如图,在⊙O中,弦AB等于半径,延长OA到C,使AC=OA.(1)求证:BC是⊙O的切线;

1、证明:因为AB=OB=OAAC=OA所以BA=1/2OC所以∠CBO=90°又因为OA=OB=AB所以三角形ABO是等边三角形所以∠ABO=60°所以∠CBA=90°-60°=30°=1/2∠BO

如图25.2-3所示,AB是⊙O的任一直径,CD是⊙O中不过圆心的一条弦,求证:AB>CD

--楼主……我记得没错的话……有条定理还是公理就是……过圆心的直径是圆上任意两点间最长的线段要证明的话……如下过C点做直径CE,连接DE,我们可得RT△CDE,由RT三角形斜边最长……我们可知AB=C

如图 在圆o中 cd是直径 ab是弦ab⊥cd于M,OM=3,DM=2,求弦AB的长

OM平方+AM平方=OA平方AM平方=5*5-3*3=16AM=4AB=AM*2=4*2=8弦AB的长等于8.

如图,在圆O中,线段AB为其直径,为什么直径AB是圆O中最长的弦

①直径是圆中最长的弦.过点A作任一弦(不与AB重合)交圆O于点K,我们证明AK小于AB即可.连接BK,则△ABK是直角三角形,∠AKB=90°,AB是斜边,所以AB大于AK.因为对于任何不与AB重合的

如图,在⊙O中,弦AB=AC,AD是⊙O的直径,试判断弦BD和CD是否相等,并说明理由.

相等证明:连接BO、CO∵AB=AC,AO=AO,BO=CA∴△ABO全等于△ACO∴∠BAD=∠CAD又∵AD=AD,AB=AC∴△ABD全等于△ACD∴BD=CD