如图,△ABC中,点D·E`F分别在BC`AB`AC上,BD=CF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:57:18
(1)∵DE∥BC,EF∥AB,∴∠AED=∠ECF,∠CEF=∠EAD.∴△ADE∽△EFC.(2)∵DE∥BC,EF∥AB,∴∠C=∠AED,∠FEC=∠A,∴△EFC∽△ADE,而S△ADE=2
连接BE,由于DB=BC,点E是CD中点,所以BE垂直于CD,从而三角形BEA是直角三角形,而F又是AB中点,根据直角三角形斜边的一半等于斜边的中线,得到EF=1/2AB
证明:∵D、E、F分别是△ABC三边的中点,∴DE∥.12AC,EF∥.12AB,∴四边形ADEF为平行四边形. 又∵AC=AB,∴DE=EF.  
证明:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD
△CFD≌△BGDCF=BG,DG=DF△EGD≌△EDFEF=EG△EBG中,BE+BG>EGBE+CF>EG
(1)AD=AE;理由:∵AB=AC,∴∠B=∠C,∵DF⊥BC,∴∠BDF+∠B=90°,∠C+∠E=90°,∴∠E=∠BDF,∵∠BDF=∠EDA,∴∠E=∠EDA,∴AE=AD;(2)成立;∵A
(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DF
证明:三角形ADC为直角三角形,且E为斜边上的中点,所以2ED=AC,F,G分别是AC,AB,BC的中点,所以2FG=AC,所以ED=FG
因为F、G为中点,所以FG//AC,且FG=1/2AC.因为AD⊥BC,E为斜边AC的中点,所以DE=1/2AC.所以FG=DE.
连接OD,半径r=OE=OF=EC=FCFC=AC-AF=b-AFAF=AD=AB-BD=c-BDBD=BE=BC-EC=a-r所以r=b-(c-(a-r))=b-c+a-r从而2r=a+b-c,r=
(1)因为角ACB=90度点D为AB的中点所以CD是直角三角形ACB的中线所以CO=AD=1/2AB所以角A=角ACD因为角DE垂直DF所以角EDF=90度所以角EDF+角ACB=180度所以F,C,
1、证明:∵等边△ABC∴AB=AC,∠ABC=∠BAC=60∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE∵△ABD≌△CAE∴∠BAD=∠CAE∴∠DFC=∠CAD+∠CAE=∠CAD+∠
△DEF和△ABC相似,且相似比是1/2所以:其面积比是1/4,所以:S△ABC=4S△DEF=4*4=16(平方厘米)
要证DE=DF,只需证△AED全等于△AFD.要证RT△AED全等于RT△AFD.现已知AD=AD,∠EAD=∠FAD,故RT△AED全等于RT△AFD,此题得证.证明:∵AD=AD(公共边)∠EAD
【⊿ABC∽⊿EFD】证法1:∵点D、E、F分别是AB、BC、CA的中点∴DE,DF,EF均是⊿ABC的中位线∴DE=½AC,DF=½BC,EF=½AB即DE/DF/EF
延长FD到G,使得DG=DE.然后连接MG.那么因为∠ADE=∠CDF,∠ADG与∠CDF是对顶角.所以∠ADE=∠ADG.然后有他们的两个补角∠EDM=∠GDM,然后对于三角形EDM与三角形GDM由
∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=
证明:∵△ABC为等边三角形,∴AC=BC,∠A=∠ACB=60°,在△AEC和△CDB中,AE=CD∠A=∠ACB=60°AC=CB,∴△AEC≌△CDB(SAS),∴∠ACE=∠CBD,∵∠ACE
应该是角ACB为90°.∵ED⊥BC,∠ACB=90º,且E为AB中点∴FD‖AC,∠BED=∠DEC∴∠AEF=∠EAC=∠BED=∠DEC=∠ECA∴EC=EA=AF∴∠F=∠AEF=∠