如图,O为Rt△ABC的直角边AC上一点.以OC为半径的半圆与斜边AB相切于点D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:19:06
如图,O为Rt△ABC的直角边AC上一点.以OC为半径的半圆与斜边AB相切于点D
如图,以Rt三角形ABC的顶点A为直角顶点,AB.AC为直角边,以三角形ABC分别作等腰Rt三角形ABD,

显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.

如图,以Rt△ABC的直角边AB为直径的圆O交斜边BC于点E,F是AC的中点,求证EF是圆O的切线

我画了图,你对照图看看.∠FEA=∠EAE=∠ABE说明∠OEF为直角就行了

如图,再平面直角坐标系中,O是坐标原点,已知点A(0,2)和点B(1,0),以A为直角边做Rt△ABC,且AC∥x轴

⑴AB=√5,∵AC∥X轴,∴∠OBA=∠CAB,∴RTΔOAB∽RTΔBCA,∴AB/AC=OB/AB,AC=5/1=5,∴C(5,2).⑵AC中垂直线:X=5/2,抛物线Y=1/2(X+b)

如图,在平面直角坐标系中,Rt△ABC的顶点B在原点O直角边BC在轴正半轴上∠ACB=90°点A的坐标为(3,根号3).

另一种情况设F(X,0),那么E(x/2,√3x/6),A(3,√3)向量EA(x/2-3,√3x/6-√3),FA(x-3,-√3)EA*FA=0,算出x=4或6,因为D不能在c点上,所以6舍去

如图,在Rt△ABC中,以直角边AB为直径的圆O交斜边于D,OE平行BC交AC于E.求证:DE是圆O的切线

证明:连接BD,OD∵OE//AC∴BE/CE=BO/AO=1∴BE=CE∵AB是直径∴∠ADB=90º,则∠BDC=90º∴DE=½BC=BE【直角三角形斜边中线等于斜

如图,在Rt△ABC中,以直角边AB为直径的圆O交斜边于D,OE平行BC交AC于E.求证:(1)DE是圆O的切线

证明(1)DE与半圆O相切.证明:连接OD、OE.∵O、E分别是BA、BC的中点,∴OE∥AC,∴∠BOE=∠BAC,∠EOD=∠ADO,∵OA=OD,∴∠ADO=∠BAC.∴∠BOE=∠EOD.∵O

1.如图1,以Rt三角形ABC的直角边AB为直径的圆O与斜边AC交与点D,点E是BC的中点.求证:DE是圆O的切线

1、证明:连接DO、BD.∵AB为直径∴角ADB=90°(直径所对的圆周角为90°)∵角ADB+角CDB=180°∴角CDB=180°-角ADB=90°角EDB标角1角EBD标角2角OBD标角3角OD

如图,MN为过Rt△ABC的直角顶点A的直线初二数学

这个吗?.再问:(我没有学“平行线等分线段”)再答:其实就是这样了解,因为F是BC中点,又因为BD//FG//EC,所以G是中点,(你可以看作三角形中线就好理解了)平行线等分线段只是说法,理解一下,和

已知:如图,分别以Rt△ABC的直角边AC.BC为边,在Rt△ABC外作两个等边三角形(省略).

∵△FBC与△ECA为等边三角形∴∠FCB=∠ECA=60°,FC=BC,CE=CA∴∠FCB+∠BCA=∠ACE+∠BCA即∠FCA=∠BCE∴△FCA≌△BCE(SAS)∴FA=BE

如图,已知点E在Rt△ABC的斜边AB上,以AE为直径的○O与直角边BC相切于点D.(1)求证:AD平分∠BAC(2)若

(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,∵AC⊥BC,∴OD∥AC,∴∠2=∠3;∵OA=OD,∴∠1=∠3,∴∠1=∠2,∴AD平分∠BAC;(2)∵BC与圆相切于点D.∴BD2=B

圆与三角函数如图,已知点O是Rt△ABC的直角边AC上一动点,以O为圆心,OA为半径的圆O交于AB于点D点,DB的垂直平

设OA=R,AD=2RcosA,AB=3AD=6RcosA;AC=1.5R又AC/AB=cosAAC、AB代进去,cosA=1/2,A=60°B=30°

如图以rt△abc的直角边ab为直径作圆o,与斜边AC交于点D,E为BC边上中点,连接DE,求证:DE是圆O的切线,当∠

再问:第二问呢?再问:我也不会再答:再问:太感谢你了!你救了我啊!再答:没事,我也在学切线再问:呵呵再问:我也才学,就是搞不懂再答:多做一点题就好了再问:诶呀。。。。要做题,我本来就脑子笨笨的,额滴个

如图,Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切于点D,与BC交于

(1)证明:∵AB切⊙O于D,∴OD⊥AB,∵Rt△ABC中,∠C=90°,在Rt△AOC和Rt△AOD中,OC=ODAO=AO∴Rt△AOC≌Rt△AOD(HL).(2)设半径为r,在Rt△ODB中

(2007•长沙)如图,Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切

(1)证明:∵AB切⊙O于D,∴OD⊥AB,∵Rt△ABC中,∠C=90°,在Rt△AOC和Rt△AOD中,OC=ODAO=AO∴Rt△AOC≌Rt△AOD(HL).(2)设半径为r,在Rt△ODB中

如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切

解题思路:(1)连AD,由AB为直径,根据圆周角定理得推论得到∠ADB=90°,从而有∠C+∠EAD=90°,∠EDA+∠CDE=90°,而∠CAB=90°,根据切线的判定定理得到AC是⊙O的切线,而

如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的

∵△ABC是边长为1的等腰直角三角形,∴S△ABC=12×1×1=12=21-2;AC=12+12=2,AD=(2)2+(2)2=2…,∴S△ACD=12×2×2=1=22-2;S△ADE=12×2×