如图,AB是圆O的直径,弦DE⊥AB,C为垂足,弦DF与AB相交于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:35:35
如图,AB是圆O的直径,弦DE⊥AB,C为垂足,弦DF与AB相交于
如图,DE是圆O的直径,弦AB⊥CD垂足为C,若AB=6,CE=1则OC=() CD=()

∵DE是⊙O的直径∴AC=BC=1/2AB根据相交弦定理AC*BC=CE*CDCD=AC*BC/CE=3*3/1=9AB=CD+CE=9+1=10OC=1/2AB-CE=5-1=4有没办法证明DE与C

如图,已知AB是圆o的弦,AB的垂直平分线交圆o于点C,D,交A,B于点E,AB=6,DE:CE=1:3,求圆o的直径

设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3

如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O

当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s

如图,AB是圆O的直径,AD是弦,E 是圆O外一点,EF垂直AB于F,交AD于点C,且CE=ED,求证:DE是圆O的切线

证明:连接OD∵OD=OA∴∠ODA=∠A∵EC=ED∴∠EDC=∠ECD=∠ACF∵EF⊥AB∴∠A+∠ACF=90°∴∠ADO+∠CDE=90°即OD⊥DE∴DE是圆O的切线

如图,AB为圆O的直径,CD是圆O的弦,AB,CD的延长线交于点E,已知AB=2DE,∠E=18°,求∠AOC的度数.

连接OD,则OD=OC=DE∴角E=∠DOE=18°所以,∠ODC=∠OCD=36°(∠ODC是外角)∴∠AOC=72°(同上)

如图7,AB是圆o的直径,CD是圆o的弦,AB,CD的延长线交于点E,已知AB等于2DE,角ocd等于四十度,求角AOC

60度再问:求过程!再答:好吧!稍等再答:因为CO=DO,所以

如图,AB为圆O的直径,AC为弦D为弧BC的中点,DE⊥AC于E,DE=6,CE=2.求证:1DE是圆O的切线 2求圆o

连接OD交BC于F.连接OC(1)在⊿BOF和⊿COF中因弧BD=弧CD,则∠BOD=∠COD(等弧对等角),即∠BOF=∠COF又OB=OC(半径相等)且OF=OF所以⊿BOF≌⊿COF,得BF=C

已知:如图,圆O中,AB是直径,CO垂直AB,D是CO的中点,DE//AB,求证:弧CE=2弧AE

连接OE因为OD=1/2OC=1/2OE所以角DOE=60°则角AOE=30°圆心角的比等于所对应的弧度的比就是这样,明白没?

如图,ab,cd是圆o的直径,弦ce‖ab,b是弧de的中点么

∵AB∥CE,∴弧AC=弧BE,∵∠AOC=∠BOD,∴弧AC=弧BD,∴弧DB=弧EB,即点B是弧DE的中点.

如图,圆o的半径等于2,弧AC的度数为60°,AB、CD是圆O的直径,弦DE⊥AB交AB于M

1、添加辅助线BD∵∠ACD=60° ∴∠AOC=60°(有一个角是60°的等腰三角形是等边三角形) ∴∠BOD=60°(对顶角相等)在直角三角形中∠MDO=30°∴线段OM=1/

如图,已知AB、CD是O的的两条直径,弦DE//AB.若弧DE的度数为40°,则角BOC=?

AB‖ED弧BD=(180°-40°)/2=70°∠BOC=180°-70=110°

如图,AB是圆o的直径,BC是弦,直径DE与弦BC交与F,若弧AD=弧CE,试判断DE与BC的位置关系,并说明理由

连接OC,则有:OB=OC.已知,弧AD=弧CE,可得:∠AOD=∠COE;所以,∠BOE=∠AOD=∠COE;即有:OE是等腰△OBC顶角∠BOC的平分线,所以,OE垂直平分BC,即:DE垂直平分B

如图,AB为圆o的直径,半径OC⊥AB,点E.F是弧AC的三等分点,DE‖AB.

(1)连接OE、OF,∠AOE=∠EOF=∠FOC,(同弧所对的圆心角相等)在△OED中,∠EOD=60°,∠EDO=90°,∵∠OED=30°.在直角直角形中,30°所对的直角边=斜边的一半.∵OD

如图,其中AB是圆O的直径,AC是弦,D是优弧ABC的中点,弦DE垂直AB于点F.

右图,显然CE假如重合,那么MD也就重合了.所以,只有在左上图,ADC是正三角形,角BAC为30度的时候,才会出现CE重合的现象.再问:挺有道理的诶~!我也想过这种情况,但是不确定题目是让我补充条件还

如图,AB为圆O的直径,AC为弦D为弧BC的中点,DE⊥AC于E,DE=6,CE=2(1)求证:DE是圆O的切线(2)求

(1)证明:连接BC、ODAB为直径,则∠ACB=90,BC⊥ACDE⊥AC,∴DE‖BCD是弧BC中点,根据垂径定理,OD⊥BC.∴OD⊥DEDE是圆的切线(2)连接AD.∠CDE为弦切角,∠DAE

如图,AE是圆O的直径,弦AB⊥CD,垂足为F,求证弧BC=弧DE

图都没有,汗~~~~~~~~~~~~~幸亏自己画了幅证明:连接BE,OB,OC,OD.作OJ⊥CD于k,垂直BE于G点那么易证角BOJ=角EOJ,角COJ=角DOJso角COB=角DOE &

如图1,已知AB是圆O的直径,AC是圆O的弦,点D是优弧ABC的中点,弦DE⊥AB,垂足为F,DE交AC于点G.

小德德呢:证明:ME=MG成立,理由如下:如图,连接EO,并延长交⊙O于N,连接BC∵AB是⊙O的直径,且AB⊥DE∴弧AD=弧AE∵点D是优弧ABC的中点∴弧AD=弧DBC∴弧AE=弧DBC∴弧AC

已知如图,AC是圆O的直径,AD=CD,DE⊥AB于E,四边形ABCD的面积等于18,求DE的长.

过D作DF⊥BF交BC的延长线于F∵四边形ABCD是园O内接四边形∴∠DAB+∠DCB=180°∵∠DCF+∠DCB=180°∴∠DAB=∠DCF∵DE⊥AB,DF⊥BF∴∠DEB+∠DFB=90°∴

如图,AB,DE是圆O的直径,弦AC‖DE,求证:弧BE=弧CE

证:连接OC∵AC‖DE∴∠BOE=∠OAC,∠OCA=∠COE∵OA=OC∴∠OAC=∠OCA∴∠BOE=∠COE∴弧BE=弧CE

如图,已知AB是圆O的直径,AC是圆O的弦,点D是优弧ABC的中点,弦DE⊥AB,垂足为F,DE交AC于点G.

ME=MG成立,理由如下:如图,连接EO,并延长交⊙O于N,连接BC∵AB是⊙O的直径,且AB⊥DE∴弧AD=弧AE∵点D是优弧ABC的中点∴弧AD=弧DBC∴弧