如图,AB是○O的直径,点C是○O伤一点,AD与过点C的切线垂直
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:20:15
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC
证明:连接AG并延长交BC于D,连接PD,连接OG交AC于E则G是重心,∴E为AC中点,而AO=BO,∴OE//BC=>AG=GD,又AQ=QP,∴QG//PD=>QG//面PBC
(1)连接OC,因为角DB0=角COP,又因为角COP=2倍角CBO,所以角DBC=角CBO.可以证明三角形DBC与三角形CBA相似,可以得到DB:BC=CB:BA,=>BC^2=BD*BA(2)连接
∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE
(1)角CEA=角D.(2)结论仍成立.证明:CD为直径,则∠DFC=90°,得∠D+∠DCF=90°;点C为弧AB的中点,则CD垂直AB,得:∠CEA+∠DCF=90°.所以,∠CEA=∠D.
(1)证明:如图,连接OC,∵DC切⊙O于C,∴OC⊥CF,∴∠ADC=∠OCF=90°,∴AD∥OC,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,即AC平分∠BA
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴BC=BD,∴∠P=∠CAB,又∵sin∠P=35,∴sin∠CA
先自己画个图,标准点,再看题目
1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方
1、连接BC,∠DCA=∠CBA,从而证明三角形DAC相似于三角形CAB,于是∠ADC=∠ACB=直角2、AD:AC=AC:AB,所以ACxAC=80,AC的长度就是把80开方就行了
证明:(1)∵CD是⊙O的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°.①(2分)∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,两边
(1)连接OC,因为C是圆O上一点,CD是圆O的切线,所以∠DCO=90度,∠ACB=90度,所以∠DCB=∠DCO-∠OCB=∠90度-∠OCB,∠CAB=180度-∠ACB-∠CBA=∠90度-∠
图是不是这样?如图做辅助线AC,因为△ABC是圆的内接三角形,所以角ACB是直角又因为∠B是ACB和DOB的公共角,所以RT△ABC∽RT△DOB所以AB/BC=BD/BO即2BO/BC=BD/BO&
BE是⊙O的切线.[证明]∵AB是⊙O的直径,∴AC⊥BC,∴BC⊥CE,而D是BE的中点,∴CD=BD.∵OC=OB、OD=OD、CD=BD,∴△OCD≌△OCB,∴∠OCD=∠OBD.∵CD切⊙O
证△ABC∽△BOD即可.BC/OB=AB/BD,推出BC*BD=AB*OB=2BO^2
连接BC∵CE是圆切线∴∠ECB=∠CDB=20°(弦切角=所夹弧上的圆周角)∵AB是直径∴∠ACD=90°(半圆上圆周角是直角)∵∠CDB=∠CAB=20°(同弧上圆周角相等)∴∠CBA=90°-∠
在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A