如图,AB垂直于BD,DE垂直于BD,点C是BD上一点,且BC=DE,CD=AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:55:24
在直角三角形ABD中有:cosA=AD/AB;在直角三角形AEC中有:cosA=AE/AC;所以AD/AB=AE/AC又因:角A=角A所以ADE相似于ABC所以角ADE=角ABC.
过d做dh平行于ab 与af的延长线交与h三角形aeg 与三角形 dfh 全等 有ag = gh然后连接df 点f是bc
证明:如图,∵AB⊥BD,ED⊥BD ∴∠B=∠D=90°
答:四边形CDEF是菱形.以下证明:∵DE⊥AB∴∠BED=90°而∠ACB=90°,即∠BCD=90°∴∠BED=∠BCD又∵BD是∠ABC的平分线,即∠EBD=∠CBD∴△BED≌△BCD&nbs
再答:或者这样也可以解:连结DB,AC,取DB中点O,连结OA,OC∵AB=AD∴OA⊥DB同理可证OC⊥DB又∵OA,OC属于平面OAC中∴DB⊥平面OAC又∵AC属于平面OAC中∴AC⊥BD再答:
第一题的确是有问题的,反证如下:我们可以在CD上任取一点M,并作MN垂直于AB连接ME,则如果原命题能够成立即:DE的平方=AE*CE,则同理也可证明DE的平方=AE*ME(所有条件是一样的),这样就
∵ AE=BF ,∴ AF=BE ,∵ DE⊥AB,CF⊥AB,∴ ∠CFA=∠DEB=90°,∵ AC=BD,AF=BE&nbs
是菱形.△CBD全等于△EBD=〉CD=DE,∠CDF=∠EDFDE//CH=〉∠FDE=∠DFC所以∠CDF=∠DFC所以CD=FC=〉DE=FCDE//CH,DE=FC=〉DEFC为平行四边形DE
做ME和MD连线,构成△MED.∵△EBC和△DBC为直角三角形且M为两个直角三角形斜边上的中点.∴ME=MD=(1/2)BC因此,△MED为等腰三角形而N为该三角形的底边的中点,所以,MN⊥DE
角平分线上的点到线段两边距离相等!
∵AD平分∠BAC,∴∠DAB=∠DAC,∵DE∥AC,∴∠ADE=∠DAC,∴∠BAD=∠ADE,∴AE=DE,延长BD交AC(根据图形或交延长线)于F,易得ΔADB≌ΔADF,∴BD=DF,∴BE
∵∠EBD=∠FBD∠BED=∠BFD=90°BD=BD∴△BED≌△BFD∴BE=BF又BE为角平分线∴三线合一
图虽然不太一样,但答案不变.⑴能AD/AB=DE/BFRt⊿ADE、Rt⊿AFB,具有相同的顶角∠A,∴Rt⊿ADE∽Rt⊿AFB∴AD/AB=DE/BF⑵ABCD的面积S=10*2.5=25另一方面
因为AB垂直BD,ED垂直BD,所以角B=角D=90度,又因为AB=CD,BC=DE,所以三角形abc全等于三角形cdb,所以角a=角ecd又因为角a+角acb=90度,所以角ecd+角acb=90度
先证明全等sas再问:表示无能,这是预习看不懂QAQ再问:谢谢,麻烦你了再答:没事
证明:∵∠E=∠DFC=90°,BD=CD,BE=CF.∴Rt⊿DEB≌Rt⊿DFC(HL).∴DE=DF.故:AD平分∠BAC.同理可证:Rt⊿AED≌Rt⊿AFD(HL).∴AE=AF.∴AB+A
【△CDE是等腰三角形】∵AC⊥BC,AD⊥BD∴∠ACB=∠ADB=90°∵E是AB的中点∴CE=½AB,DE=½AB(直角三角形斜边中线等于斜边的一半)∴CE=DE即△CDE是