如图 已知角mon等于30度,点A,B分别在射线OM,ON上移动
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:36:22
该题有两种情况1:当A,C在点B的两侧时角COM=1/2角AOC角CON=1/2角BOC所以:角MON=1/2(角AOC-角BOC)=1/2角AOB=30度所以:角AOB=60度,角BOC=40度所以
先做出AB的中垂线再做出∠MON的中垂线两条直线的交点即为P点
问题不太对,是角ABM吗?还是角ABC或者ACB?角ACB不变,应该是45°
(1)∵∠ABN=∠O+∠OAB=90+60=150∴ ∠ABD=1/2∠ABN=75 &nbs
解题思路:本题主要考查了全等三角形的判定,相似三角形的性质,以及三角函数,正确作辅助线,转化为直角三角形的计算,以及正确进行分类是解题的关键.解题过程:
∵∠BON=∠CON∠AOM=∠BOM∠MON=∠BOM-∠BON=∠BOM-∠BOC/2=(∠AOB-∠BOC)/2=∠AOC/2∴∠MON=40(度)
延长BP交OM于C∵∠MON=6O°,PB⊥ON∴∠OCB=30°∵PA⊥OM,PA=2∴PC=4,AC=2√3∵PB=11∴BC=PB+PC=11+4=15∵∠OCB=30°,PB⊥ON∴OC=10
大小不随之变化证明:<ABD=1/2<ABN=1/2(<O+<OAB)=1/2<O+1/2<OAB又:1/2<OAB=<CAB所以<ABD=1/2<O+<CAB又:<ABD=<C+<CAB所以:<C=
图呐……∠MON=45°(OC在∠AOB内)或90°(∠AOB∠BOC互补)补角:135°或90°∠MON=∠MOC+∠NOC=二分之一(∠AOC+∠BOC)=二分之一90°=45°(OC在∠AOB内
/>1、∵∠AOB=90,∠BOC=30∴∠AOC=∠AOB+∠BOC=90+30=120∵OM平分∠AOC∴∠COM=∠AOC/2=120/2=60∵ON平分∠BOC∴∠CON=∠BOC/2∴∠MO
∠C=∠DBC-∠BAC=1/2(∠DBO-∠BAO)=1/2(180°-∠OBA-∠BAO)=1/2(180°-90°)=45°所以大小不变再问:为什么是=1/2(∠DBO-∠BAO)再答:DC,A
已知:∠AOB=150°=∠AOC+∠BOC角平分线可得∠MOC=∠AOC/2,∠NOC=∠BOC/2∠MON=∠MOC+∠NOC=∠AOC/2+∠BOC/2=(∠AOC+∠BOC)/2=∠AOB/2
【解析】分类归纳(图形的变化类),等边三角形的性质,三角形内角和定理,平行的判定和性质,含30度角的直角三角形的性质.【分析】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=6
题目中有一些字母不对应,应当是下图.∠C1CN=45°. 证明:在OA上截取OE=OB1,连结B1E,∵正方形AOCD,OA=OC,∠O=90°,∴AE=B1C,∠OEB1=45°,∠OAB
亲 你的图呢 这是2012沈阳高考题,
1.如果PB⊥OM,PD⊥ON,则ABP与CDP全等∵PB⊥OM,PD⊥ON∴∠ABP=∠CDP,PB=PD又∵AB=CD∴△ABP≌△CDP如果无PB⊥OM,PD⊥ON则无法证明全等2.无论△ABP
(1)作ON的垂线1、以点A为圆心,任意长为半径画弧交直线ON于点B,C2、以B,C为圆心,大于BC/2的长为半径画弧,两弧交于一点D3、连接AD,则直线AD就是ON的垂线.(2)作OM的垂线1、以O
/>∠C的大小保持不变.理由:∵∠ABN=90°+∠OAB,AC平分∠OAB,BD平分∠ABN,∴∠ABD=12∠ABN=12(90°+∠OAB)=45°+12∠OAB,即∠ABD=45°+∠CAB,