如图 在三角形abc中 点e在bc上的一点 ec等于2be
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:58:38
根据三角形中位线定理,DF=1/2AC,DE=1/2AB,在直角三角形AHC中,HE是斜边中线,HE=1/2AC,同理,FH=1/2AB,DF=HE,DE=FH,FE是公共边三角形DEF全等于三角形H
首先第一问的题目应该是证明MA²=ME·MD对于第二问我们可以看出RtDMB∽RtDAE∽RtCME有AE/AD=ME/MC=MB/MD得到AE²/AD²=ME*MB/M
连接EC,EB因为EA是角CAB的平分线又已知EF垂直AB于点F,EG垂直AC交AC的延长线于点G所以,易知EG=EF又有ED垂直平分BC同样易知EC=EB所以两个直角三角形CGE和BFE全等所以BF
D为BC中点所以S三角形ACD=1/2S三角形ABCE为AD中点所以S三角形AEC=1/2S三角形ACD所以S三角形AEC=1/24S三角形ABC=1
(1)AE=ED,AF∥BC,∴AF/BD=AE/ED=1,∴AF=BD,又AF=DC,∴BD=DC,即D是BC的中点.(2)四边形ADCF是矩形.事实上,AF∥=DC,∴四边形ADCF是平行四边形,
三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了
解S△ABC=4S△ABD=S△ABC/2=2S△ABE=S△ABD/2=1(因为D是BC中点,但算面积时△ABD与△ACD与△ABC的高是相等的,下面一步同理)
∵D为BC中点,∴SΔABC=2SΔABD,∵E为AD中点,∴SΔABD=2SΔABE,∴SΔABC=4SΔABE=4.
延长FE,截取EH=EG,连接CH∵E是BC中点,那么BE=CE∠BEG=∠CEH∴△BEG≌△CEH(
在三角形ABC中,若DE等于2分之一BC,则D,E是三角形ABC的AB,AC的中点再问:判断逆命题的真假,并说出理由再答:再问:你图画错了我要理由再答:以BC为底作一个三角形GBC,做DF=BC取DF
是求S△DEF吗?如下:S△AEF:S△ABC=1/4(△AEF的高和底分别是△ABC的高和底的1/2),同理S△BDE:S△ABC=1/4,S△CFD:S△ABC=1/4,所以S△DEF=(1-1/
证明:∵DE∥BC,∴∠AED=∠C,∵EF∥AB,∴∠A=∠CEF,∵E为AC中点,∴AE=CE,在ΔADE与ΔEFC中:∠A=∠CEF,AE=CE,∠AED=∠C,∴ΔADE≌ΔEFC(SAS).
延长AE至点F,使得AE=EF.连结CF.由CE=ED,AE=EF知,△ADE≌△FCE(S,A,S).故得DA=CF,
逆命题为:在三角形ABC中,若D,E是三角形ABC的AB,AC边上的点,DE等于2分之一BC,则D,E是三角形ABC的AB,AC的中点.此为假命题因为D,E是三角形ABC的AB,AC边上的点,DE等于
图能大些马再问:再答:֤������Ϊ��db��bc���ԣ������dbc�ǵ�������Ρ���Ϊ����e��cd���е㣬���ԣ�be��ֱ��ac����������εױߵ����ߴ
首先知道∠cbf=90°,可得到∠abc=45°=∠fbg先证明∠ace=∠adc,可得到∠adc=∠cfb在证明△acd≌△cbf,可得到bf=cd,可得到bf=bd最后利用∠fbg=∠abc=45
证明:1.证明AF=1/2FC在△BCF中∵DG为中位线∴CG=FGBF∥DG在△ADG中∵EF∥DG∴AF:FG=AE:ED∵E是AD中点∴AE=ED∴AF=FG∴AF=FG=CG∴AF=1/2FC
36,ABF的面积是ABC的一半48,AEF的面积是ABC的的3/4,所以AEF的面积是=48*3/4,也就是36啦,