如图 以点o为圆心的直径bc为边做等边三角形abc,ab,ac分别交

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:44:07
如图 以点o为圆心的直径bc为边做等边三角形abc,ab,ac分别交
如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为CF的中点,连接BE交AC于点M,AD为△ABC的角

(1)证明:连接EC,∵AD⊥BE于H,∠1=∠2,∴∠3=∠4(1分)∵∠4=∠5,∴∠4=∠5=∠3,(2分)又∵E为CF的中点,∴EF=CE,∴∠6=∠7,(3分),∵BC是直径,∴∠E=90°

如图9,BC是圆心O的直径,点A、F在圆心O上,弧AB=弧AF,AM垂直于BC,垂足为D,BF与AD交于点E.求证:AE

哪有那么复杂?∵AM⊥BC,BC是直径∴弧AB=弧BM∴∠BAM=∠BFA又弧AB=弧AF∠ABF=∠BFA=∠BAM∴AE=BE

如图 已知AB是圆心O的直径,AC为弦,OD‖BC,交AC于点D,OD=5cm,求BC的长.

已知AB为圆O的直径,所以OA=OB,且OD∥BC交AC于D,则OD是圆内接三角形的中位线,所以OS=1/2BC,若OD=5cm,则BC=10cm,三角形中位线定理:三角形的中位线平行于第三边,并且等

证明圆内黄金分割点用圆规画任意圆,圆心为o,直径为AB和垂直于AB的直径CD,以B为圆心,以BC为半径画弧交于点D,再以

不妨设圆O的半径是1,则易知圆B的半径是根号2,圆A的半径是1三角形AHB中,AH=1,BH=根号2,AB=2根据余弦定理得cos角HAB=(AH²+AB²-BH²)/(

如图在三角形abc中.∠ABC=90°,以AB为直径作圆心O交AC边于D过点D做切线交BC于点E.

联OD,BD.有角BDA=角BDC=角ABC=角ODE=90度.那么角ODB=角EDC——》角ODB=角ODE-角BDE=90度-角BDE=角EDC角ABD=角C.——》看三角形ABD和ABC易得.=

如图,已知三角形ABC,以BC为直径,O为圆心的半圆脚AC于点F,点E位

郭敦顒回答:应是已知直角三角形ABC,以BC为直径,O为圆心的半圆交AC于点F,AB⊥BC,AB=3,BC=4,AD平分∠BAC,DD在BC上,…解答为什么AB/BD=AC/CD?作DP⊥AC,∵AD

如图,O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

证明:(1)连OM,过O作ON⊥CD于N;∵⊙O与BC相切,∴OM⊥BC,∵四边形ABCD是正方形,∴AC平分∠BCD,∴OM=ON,∴CD与⊙O相切.(2)∵四边形ABCD为正方形,∴AB=CD=1

如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.

如图,AH⊥BC,AH为圆G的直径,O为圆O的圆心.圆O与圆G内切于A点,△ABC与圆O 交BC两点.

90度证明:因为.圆O与圆G内切于A点,OA是圆O的半径,OH是圆G的直径所以OA,OH在一条直线上,即延长OH交圆O与I点,AI为圆O的直径因为AH⊥BC所以AI⊥BC且平分BC所以三角形ABC为等

(2012•鼓楼区二模)如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为弧CF的中点,连接BE交AC

(1)直线AB与⊙O的位置关系是相切,理由是:连接CE,∵BC为直径,∴∠BEC=90°,∵AD⊥BE,∴AD∥EC,∴∠ACE=∠CAD,∵弧EF=弧CE,∴∠FCE=∠CBE,∴∠CAD=∠CBE

初三数学题如图,已知△ABC中,AB=AC= 5,BC=4,点O在BC边上运动,以O为圆心,OA为半径的圆与边AB交于点

你题目数据有问题吧?等腰三角形ABC,当O为BC中点时最小,所以OA的最小值不可能可能是1的.再问:AB=AC=根号5

18、已知:如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.

这题确实有点难.(1)较容易,就是两角相等证相似(一直径所对直角一等弧所对圆周角).(2)就稍难些了.在△BCD中用勾股定理求出BD的长,再证△ABE相似于△DBC,得AB:BD=BE:BC,再比例变

1、如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为 CF^的中点,连接BE交AC于点M,AD为△A

1、证明:连接BF∵AD平分∠BAC∴∠BAD=∠CAD∵AD⊥BE∴AB=AM∴∠ABE=∠AMB∵AD⊥BE∴∠CAD+∠AMB=90,∠BAD+∠ABE=90∵BC为直径,F为圆上一点∴∠BFC

如图,已知△ABC,以BC为直径,O为圆心的半圆交AC与点F,点E为弧CF的中点

1、证明:连接CE∵直径BC∴∠BEC=90∴∠ACE+∠CME=90∵AD⊥BE∴∠CAD+∠AMB=90∵∠CME=∠ANB∴∠ACE=∠CAD∵∠ACE、∠FBE所对应圆弧都为劣弧EF∴∠ACE

如图,已知△ABC,以BC为直径,点O为圆心的半圆交AC于点F.点E为弧CF的中点,连接BE交AC于点M,AD为△BAC

要证明AB是圆O的切线就是证明∠3+∠7=90°做题的时候把各个角度用数字标出来通过题目给出的条件仔细推理就可以做出来的再问:为什么AD⊥BE于H,∠1=∠2,就有∴∠3=∠4再答:因为AD垂直BE所

如图,已知△ABC中,AB=AC=√5,BC=4,点O在BC边上运动,以O为圆心,OA为半径的圆与边AB交于点D(点A除

AB=AC=√5,BC=4=>cos∠ABC=(BC/2)/AB=2/√5OB=x,=>OA^2=AB^2+OB^2-2AB*OB*cos∠ABC=5+x^2-4x=>cos∠OAB=(AB^2+OA

如图,Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切于点D,与BC交于

(1)证明:∵AB切⊙O于D,∴OD⊥AB,∵Rt△ABC中,∠C=90°,在Rt△AOC和Rt△AOD中,OC=ODAO=AO∴Rt△AOC≌Rt△AOD(HL).(2)设半径为r,在Rt△ODB中

如图,以正方形ABCD的边CD为直径作圆O,以顶点C为圆心、边CB为半径作弧BD,E为BC的延长线上一点,且CD,CE的

:(1)连接CF,∵CD、CE的长为方程x2-2(+1)x+4=0的两根;∴CE=2,CD=2;∵∠DCE=90°,∴tan∠CDE=cd∴∠CDE=60°;∵CD是⊙O的直径,∴∠DFC=90°;∴

如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

从点O引垂线至CD,垂足为点N,即交于CD上点N;在三角形OCM和三角形OCN中,因为角COM=角CON=90度,角ACB=角ACD,OC=OC,所以三角形OCM和三角形OCN全等;所以ON=OM=圆

如图,CD是圆O的直径,以D为圆心,DO为半径作弧,交圆O于点A,B

连接OA,OB,AD,有AO=AD=OD,所以∠AOD=60° 同理,∠BOD=60°,所以∠AOB=120°.还可得出∠AOC=180°-60°=120°,所以∠AOB=∠AOC=∠BOC