如图 p为等边三角形abc的中线AD上的一点,BD平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:10:18
延长AB到点E,使BE=CN,连接DE∵∠DBE=∠DCN=90°DB=DC∴△DBE≌△DCN∴DE=DN∵易得:∠EDM=∠NDM=60°DM为公共边∴△DME≌△DMN∴MN=EM从而,有:MN
(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,
等下再答:∵△ABC和△ADE是等边三角形∴AD=AE,AB=AC∠BAC=∠DAE=60°∠BAD+∠DAC=∠EAC+∠DAC∴∠BAD=∠EAC(等式的性质)在△BAD和△CAE中AD=AE∠B
这个题目主要考察的是正弦定理和余弦定理的应用.(1)用正弦定理即可求出 EP BP的长度.(2)EQ=EP EF=10 ∠FEQ=60°-45°(∠FEQ=∠QEP-∠PEF ∠PEF=∠
解题思路:根据题意,由三角形相似的知识可求,根据对应线段成比例解题过程:
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
证明:如图所示∵△ADE是等边三角形∴∠ADE=60°又∵△ABC是等边三角形∴∠BAC=60°又∵AD是△ABC的中线∴∠DAC=30°=∠DAF∴∠AFD=90°∴AC⊥DE∵△ADE是等边三角形
CE=1/4CB在直角三角形CDE中,角C=60度(等边三角形的内角)角DEC=90度所以角CDE=30度,所以CE=1/2CD因为BD是中线,所以CD=1/2AC所以CE=1/4AC因为AC=BC(
再答:【有异议,再提问;没异议,请选为"满意答案",谢谢!】
问题呢?没写出来.
证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,∴AE=AD,AD为∠BAC的角平分线,即∠CAD=∠BAD=30°,∴∠BAE=∠BAD=30°,在△ABE和△ABD中,AE=AD∠B
∵EG‖BC∴△AEG≌△ABC又∵AE:AB=1/2∴AG:AC=1/2即G是AC中点所以DG‖AB∴△CDG≌△CAB∴S△CDG:S△CAB=(CD:CB)²=(1/2)²=
过A作AM⊥BC交BC于M,作PN⊥AM于N,过P作KP‖AC交AB于K,过K作kQ⊥AC交AC于Q,过k作KH⊥AM交AM于H,过P作PG⊥KH交kH于G,∴PE=MN(1)由PF=KQ,∠KAH=
∵△ABC是等边三角形∴∠ABC=∠ACB=60°∵CD=CE∴∠CDE=∠E∵∠CDE+∠E=∠ACB∴∠CDE=∠E=30°过C作CH⊥DE于H∴CH=CD/2=1/2∴DH=√(DC²
作PH‖AB交AB于H,作FM‖BC交AC于M, 易得△AFM和△FHP为等边△,四边形BDPH和PEMF为平行四边形. ∴PF=FH,PE=FM=AF,PD=BH ∴P
1、证明:∵等边△ABC∴BC=AC,∠C=60∵等边△CDE∴CE=CD∴AD=AC-CD,BE=BC-CE∵P是AD的中点∴PD=(AC-CD)/2∴CP=CD+PD=(AC+CD)/2同理可得:
/>∵△ABC是等边三角形,AD是中线∴AD⊥BC,∠BAD=∠CAD=30°∵AD=AE∴∠ADE=75°∴∠CDE=90-75=15°
把PA绕点A逆时针旋转60°,得AD,则DA=PA,连CD,DP,CP,如图,∵△ABC为等边三角形ABC,∴∠BAC=60°,AC=AB∴∠DAC=∠BAP,∴△DAC≌△PAB,∴DC=PB,而P
∠CBA=∠CED+∠CDE=2∠CED所以∠CED=30度,所以EF=2分之根号3,所以DE为根号3CF^2=CE^2-(DE/2)^2CF=05再问:格式不对哟,改对了就采纳分就是你的再答:∵∠C
连接oc∵中线ad与中线be交于点o又∵△ABC为等边三角形∴∠ocd=30°,oc=oa,∠ODC=90°∴△ODC为RT△∴oc=2od∵od=1∴oc=2∴oa=2再问:Ϊʲôoe=od再问:л