如图 o是三角形abc的外心,ad是bc边上的高,r是三角形abc外接圆的半径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:09:28
当O在△ABC的内部,则∠A=40°当O在△ABC的外部,则∠A=140°
O是外心,求角BOC:根据外接圆性质,圆心角BOC是其对应弧段的圆周角A=60度的2倍,即角BOC=120度I是内心求角BIC根据内接圆性质(圆心是三角形角平分线的交点),角BIC=180度-0.5*
∠BOC=180-(180-∠A)÷2=180-(180-60)÷2=180-60=120度
125°∠BOC=140°且O为△ABC外心所以弧BC所对的圆周角BAC=70°所以∠ABC+∠BCA=110°又∵I为△ABC内心∴∠IBC+∠ICB=55°∴∠I=125°
因为O是三角形ABC的外心所以OA=OB=OC所以∠OAC=∠OCA,∠OAB=∠OBA,∠OBC=∠OCB因为∠BOC=140°所以∠OBC=∠OCB=20°又因为∠OAC+∠OCA+∠OAB+∠O
连接BI∵I是△ABC的内心∴∠BAI=∠CAI,∠ABI=∠CBI.弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI∠IBE=∠IBC+∠EBC∴∠EBI=∠EIB∴EB=EI
已知点O为三角形ABC的外心,角A等于60度,则角BOC的度数是120°(圆心角是圆周角的2倍)
点o是三角形abc的外心,则oa=ob=oc,∠oab=∠oba,∠oac=∠oca,∠oab+∠oac=∠a=72度,∠boc=∠oab+∠oba+∠oac+∠oca=144度.
你问的不对呀?
E哪来的?I是内切圆心?再问:再答:做的有点复杂F是AE延长与O的交点。∠FIB=∠FAB+IBA=∠FAC+∠IBA=∠IBC+∠FBC =∠IBF ∴I
因为∠BIC=90+1/2∠A,∠BOC=2∠A所以90+1/2∠A=2∠A所以180=3∠A所以∠A=60度
O是三角形ABC外接圆的圆心角A所对弧等于角BOC所对弧,因此∠BOC=2∠A=140度
你能求出第一问,说明你已经发现AE其实是△ABC外接圆的直径,设外接圆圆心为QQE=r=1.5,DE=0.6∴QD=0.9∵O是外心,而AB=AC∴AO是△ABC的高和中线∴AE⊥BC,BD=CD有勾
如图所示:∵∠BOC=110°,∴∠A=12∠BOC=12×110°=55°.故答案为:55°.
设A,B,C坐标为(x1,y1),(x2,y2),(x3,y3)点O坐标(x,y)OA+OB+OC=0x1-x+x2-x+x3-x=0y1-y+y2-y+y3-y=0x=(x1+x2+x3)/3y=(
延长BI交AC于D,则角BIC=角ICD+角IDC=角ICD+角IBA+角A=(角ICD+角IBA+角BAI)+角A/2=90度+角A/24倍角BIC-360=360度+2倍角A-360=2倍角A在圆
因为 O是三角形ABC的外心, 所以 角BOC是三角形ABC的外接圆的圆心角, 角BAC是三角形ABC的外接圆的圆周角, 因为 角ABC=60度,角ACB=70度, 所以 角BAC=50
o是△ABC的外心,角A=72°,角A是圆周角,而角BOC是圆心角,它和角A都对应的是弧BC,所以角BOC=2*角A=144°