在数列an中 a1 =1,an=2sn²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:54:49
第1问:设数列{bn},令bn=an-n则an=bn+n代入a(n+1)=4an-3n+1得b(n+1)+n+1=4(bn+n)-3n+1化简得b(n+1)=4bn所以数列{bn}即数列{an-n}是
a(n+1)=2an/(an+1)∴1/a(n+1)=(an+1)/2an=1/2an+1/2∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-
由条件得a1=2,a2=5.且有:a2-a1=3*1,a3-a2=3*2,a4-a3=3*3,...an-a(n-1)=3*(n-1),累加得,an-a1=3*(1+2+3+...+n-1)=3n(n
在数列an中,a1=2,an+1=an+ln(1+1/n),则an=a(n+1)-an=ln(1+1/n)=ln(n+1)/n=ln(n+1)-lnn,则:an-a(n-1)=lnn-ln(n-1)a
∵在数列{an}中,a1=2,an+1=an+ln(1+1n),∴an+1−an=lnn+1n.∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=lnnn−1+lnn−1n
an+2=an+1-ana3=a2-a1=43a4=a3-a2=43-56=-13a5=a4-a3=-13-43=-56
a(n+1)=2an+2^n,bn=an/2^(n-1),b(n+1)=a(n+1)/2^n,b1=a1/2^0=1a(n+1)/2^n=an/2^(n-1)+1,b(n+1)=bn+1,bn为首项为
等式两边倒数,得到1/an+1=1+3/an,再变形,得到:(1/an+1)+1/2=3(1/an+1/2)所以{bn}={1/an+1/2}是一个等比数列,第一项b1=1/a1+1/2=1所以bn=
3^n+2是什么意思,是2+3^n还是3^(n+2)如果是3^n+2那么题目有问题,请把题目说清楚,不然没办法做题的,根据题目后面的问题我按照3^(n+2)解答.an+1=3an+3^(n+2),等式
∵an+1=an+2n-1,∴an-an-1=2n-2,∵a1=1,∴a2-1=1;a3-a2=2;a4-a3=22;…;an-an-1=2n-2,∴上面各式相加得,an-1=1+2+22+23+…+
(1)(an+1)/an=(1-an+1)/1+an化得an+1+2*an*an+1=an两边同时除以(an*an+1)得1/an+2=1/an+1所以数列{1/an}成等差数列(2)设1/an=bn
(1)∵an+1=2an+2n,∴an+12n=an2n−1+1.∵bn=an2n−1,∴bn+1=bn+1,∴数列{bn}是以b1=a120=1为首项,1为公差的等差数列.(2)由(1)可知:bn=
a(n+1)=an/(2an+1)1/a(n+1)=(2an+1)/an=1/an+21/a(n+1)-1/an=2,为定值.1/a1=1/3,数列{1/an}是以1/3为首项,2为公差的等差数列.1
x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10
a(n+6)=an,就说明an的数值是不断周期性的重复的,重复的间隔就是6,从第i项ai开始,往后数6项,即第i+6项就和第i项的数字相等了.既然是6个一循环.那么100中有多少个6,就是经历了多少个
a3=3a4=-1a5=-4a6=-3a7=1a8=46个一循环,而2010是6的倍数,则a2010=-3
两边都加1,右边提个2,你会发现an+1是等比哦,那bn就是等比啦,再求an1的通项公式再求an哦
(1)、a2=2a1/(2a1+1)=(4/3)/(4/3+1)=4/73a=2a2/(2a2+1)=8/15因为a2-a1不等于a3-a2,所以an不是等差数列又因为a2/a1不等于a3/a2,所以
sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1
∵在数列{an}中,a1=2,an+1=an+2n,∴a2-a1=2,a3-a2=4,a4-a3=6,…an+1-an=2n,∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+