在平面直角坐标系中,角ACB=90°,AC=4,BC=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:51:26
在平面直角坐标系中,角ACB=90°,AC=4,BC=2
在平面直角坐标系中,反比例函数y=kx

根据题意,k=-3,y=-3x,y=3时,x=-1,所以A的坐标是(-1,3),把它代入y=ax+2,得-a+2=3,解得a=-1.故答案为:-1.

已知:如图,在平面直角坐标系中,三角形ABC是直角三角形,角ACB=90度,点A、C、B的坐标分别为A(-3,0)

利用勾股AC=4BC=3所以AB=5然后又因为三角形ADB和ABC相似.所以边长的比是相同的把3,4,5代进去AD=25/4又因为OA=3所以OD=13/4所以D(13/4,0)嘿嘿,我自己做的噢!正

如图,在平面直角坐标系中,已知三角形ABC,BC=AC,角ACB=90度,点C、点B分别在x轴、y轴

1、C点在线段AB的垂直平分线上,垂直平分线与x轴的交点即为C点;因为A(-2,-2),B(0,4),直线AB的斜率为3,所以垂直平分线斜率为-1/3,并过点(-1,1),所以线段AB的垂直平分线为y

在平面直角坐标系

解题思路:MN的中垂线就是AB,求出AB的直线方程即可解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.co

已知在平面直角坐标系中

解题思路:本题考查了圆周角与圆心角,圆周角与圆外角,圆内角之间的关系;勾股定理,三角函数值等知识,难度较大,特别是第3小题,要利用圆周角与圆外角及圆内角之间的关系,才能得出结论。解题过程:第(2)题的

在平面直角坐标系中,已知A(0,1)、B(6,2),在x轴的正半轴上是否存在点C,满足角ACB=2角OAC,若存在,请求

存在设C(X,0)过C作直线L垂直于x轴因为角ACB=2角OAC,且y轴平行于L所以AC,BC与L的夹角相等所以AC的斜率与BC的斜率互为相反数即1/X=2/(6-X)解得X=2所以C(2,0)

如图在平面直角坐标系中

从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22

help me!已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,A(-3,0),C(1,0),t

1、AC=4,tan∠BAC=3/4.可知BC=3,则B点的坐标就是(1,3),函数y=kx+b,分别代入A,B两点坐标,k=3/4,b=9/4,函数解析式是:y=3/4x+9/4.2、因为三角形AB

初中数学问题,请教高手帮忙解决:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,

(1)∵tan∠ABC=1/2,AC⊥BC,∴AC:BC=1:2,∠CBA+∠CAB=90°又∵X轴⊥Y轴,所以OC⊥AB,所以∠ACO+∠BCO=90°,∴∠ACO=∠CBA∴tan∠ACO=OC/

已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为

(1)∵点A(-3,0),C(1,0),∴AC=4,BC=tan∠BAC×AC=3/4×4=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为y=kx+b,由0=k×(-3)+b3=k+b,

已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(-3,0),

(1):由题旨知tan角BAC=BC/AC=3/4,AC=4,所以BC=3.所以B点坐标(1,3)或(1,-3)因为B点坐标可以是第一象限或是第四象限.(2):根据两点直线公式的:(Y-Y1)/(X-

已知:在平面直角坐标系中

没时间详细解答,给你个思路:1、除开无用条件,原题即是求一点P,P在Y=1/4*X^2上,且P到M(-3,3)的距离加上P到B(0,1)的距离最小2、假设P(x,y),PM=根号[(y-3)^2+(x

如图,在平面直角坐标系中,

(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位

在平面直角坐标系中

解题思路:先根据题意确定C点坐标,再利用数量积的计算公式求解即可解题过程:

在平面直角坐标系中,若函数y=-34

直线y=-34x+b与x轴的交点坐标为(43b,0),与y轴交点坐标为(0,b),坐标三角形的斜边的长为(43b)2+b2=53|b|,当b>0时,b+43b+53b=16,得b=4,此时,坐标三角形

在平面直角坐标系中,RT△ABC的顶点B在原点O,直角边BC在X轴正半轴上,∠ACB=90°,

若△AEF为直角三角形,则有△DEF∽△CFA∴DE/FC=DF/ACxD=0.5xFDE=xD/√3∴(xD/√3)*√3=(xF-xD)(3-xF)得xF=2点F的坐标是(2,0)

在平面直角坐标系xoy中,

1、向量a的模可看作点Q到点(0,√3)的距离,向量b的模可以看作点Q到点(0,-√3)的距离;所以IaI+IbI=4可看作点Q到点(0,√3)和点(0,-√3)的距离之和为4,所以点Q的轨迹为以点点

如图所示 在平面直角坐标系xoy中,

(1)C点(√3,-1);D点(√3/2,-3/2)(2)第二个问题估计你说的有点问题,我想你应该是经过O、C、D三点抛物线的解析式吧如果是O、C、D:y=-4/3x²-5√3/3x

如图,在平面直角坐标系中,

解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.