在三角形中,以AB为直径的圆O交边BC于点P,BP=PC.PE垂直AC于B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:02:42
在三角形中,以AB为直径的圆O交边BC于点P,BP=PC.PE垂直AC于B
在三角形ABC中,以BC为直径的圆O交AB于D,交AC于E,BD=CE,求证:AB=AC

连接od,oe三角形obd,oce三边相等,是全等三角形由此可知角abc等于角acb三角形abc是等腰三角形,ab=ac

已知在三角形ABCA中,以AB为直径的圆O过AC边的中点D 且DE垂直于BC于点E

连接OD,那么OD是中位线,所以OD平行BC,所以∠ODE=∠CED=90°,所以OD垂直DE,从而DE是圆O切线

如图,在三角形ABC中,AB=AC,以AC为直径作圆O交BC于点D,作DE垂直AB于点E,求证:DE是圆O的切线

证明圆的切线的方法:⑴、圆心到直线的距离等于半径;⑵、过半径外端且垂直于半径.此题可用第二种方法解决,即:证明DE⊥OD.证法如下:连结OD,所以AD⊥BC,由于AB=AC,利用等腰三角形的“三线合一

如图,在Rt三角形ABC中,角BAC=90度,以AB为直径作圆O交BC于E,D为AC的中点,EF垂直AB于AB点F,过A

奇怪的题目:先证明KG重合由EG=2GF,EF垂直AB于AB点F,得知AB为EG中垂线,又有AB为直径,E为圆上一点,知G也在圆上,而K是圆和AH交点,故知K和G重合.接下来证明角EAB=30度.由于

在三角形ABC中,角A=90度,以AB为直径的圆O交BC于D,E为AB边中点 ,求证:DE是圆O的切线?

“E为AB边中点”应该是“E为BC边中点”吧证明:连接OD,OE∵AB是直径∴∠ADB=∠CDB=90°∵E是BC的中点∴ED=EB∵OB=OD,OE=OE∴△ODE≌△OBE∴∠ODE=∠OBE=9

在三角形ABC中AB=BC,以AB为直径的圆O交AC于D,过点D向DF垂直于BC交AB延长线于点E,垂足为F,DE是切线

过O做OG⊥AD于G在△ABC中∵OD=AB/2=BC/2∠DOE=∠DFB=90°,即OD‖BC∴OD为△ABC中位线即AD=AC/2=4在等腰三角形AOD中OG为AD的垂直平分线即AG=AD/2=

如图,在三角形abc中,以ab为直径的圆o交bc于点p,pd垂直于ac交于d且pd于圆o相切(1)ab=ac(2)bc=

(1)是证明吧连接PODP与圆相切,则OP⊥DP且DP⊥AC则AC平行于OP则∠OPD=∠C(同位角)且圆内OP=OD∴∠OPD=∠ODP则∠ODP=∠C△CAD中,AD=AC(2)过A做AF⊥CD于

在三角形ABC中,角A=60度,以BC为直径的圆O分别交AB,AC于D,E.

(1)∵∠A=60°,AB=AC,  ∴△ABC为等边三角形,   ∴∠B=∠C=60°;又∵OB=OD,OE=OC;  ∴△BO

在三角形ABC中,AB=BC,以AB为直径的圆O与AC交与点D,过D作DF垂直BC,交AB的延长线于E,垂足为F

连接BD,作CM⊥AE于点M,易得∠E=∠BCM∵AB是直径∴∠ADB=90°∴AD=CD=4∵AB=5∴BD=3∴sinA=3/5∴CM=8sinA=24/5=4.8∵BC=5∴cosE=cos∠B

一道数学题,如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交AC

1)连AE,因为AB为直径所以∠AEB=90因为AB=AC所以∠BAE=∠CAE=(1/2)∠BAC(三线合一)因为∠CBF=(1/2)∠BAC所以∠CBF=∠BAE因为∠BAE∠ABE=90所以∠A

如图,在三角形ABC中,AB=AC,以AB为直径的圆O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为E

改正题目,应是已知AB=BC(1)因为AB=BC所以角A=角C又因为OA=OB所以角A=角ABO所以角C=角ABO所以OD平行于BC又因为DF垂直于BC所以OD垂直于DF直线DE是圆O的切线先给第一问

如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交BC、AC于D、E,

﹙1﹚∠A=50°∠B=90°50=40°∠ODB=∠B=40°∴∠BOD=180°-40°×2=100°﹙2﹚连接BD∵AB是⊙O的直径,点E在⊙O上,∴∠AEB=90°∵D、F分别是BC和CE的中

已知:如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交BC、AC于点D、E,连结EB交O

(1)连接AD.∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∵AB=AC,∴DC=DB.∵OA=OB,∴OD∥AC.∴∠OFB=∠AEB=90°,∴OD⊥BE.(2)设AE=x,∵OD⊥BE,∴

在三角形ABC中以BC为直径的圆心O交与AB于D,交AC于E,BD=CE,求证AB=AC

∵BD=CE∴弧bd=弧ce∴弧bde=弧ced∴∠B=∠C∴AB=AC同圆或等圆中,弦相等,对应的圆心角相等,弧相等,圆周角相等弧BD=弧CE加上公共弧DE就得到弧BDE=弧CED同弧所对圆周角相等

已知在三角形ABC中,AB等于AC,圆O为三角形ABC的外接圆,CD为圆O的直径,DM平行于AC

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B

如图在三角形abc中ab=ac以ab为直径的半圆o交bc于点d,

第一问,连接AD,得角BDA=90度,又三角形ABC为等腰三角形,根据三线合一得AD平分BC,D为BC中点;第二问:DE为圆的切线理由如下:连接DO,DO为三角形ABC的中位线,DO与AC平行,角DE

在三角形ABC中,以AB为直径的圆O交于BC于D,连接AD,请你添加一个条件,使三角形ABD全等于acd

如图,因为AB为直径,所以角ADC等于90°(圆周角所对的弦为直径),所以要想两个三角形全等,则加AB=AC或者角B=角C其中一个条件即可

在三角形abc中,以ab为直径的圆o交bc于d,连接ad.请你添加一个条件使三角形abd全等于三角形acd,并证明

需要添加的条件就是AB=AC或者D是BC中点∠ABD是直角AD是公共边如果AB=AC或者BD=CD则△ABD≌△ACD

如图,已知在三角形ABC中,AB=AC,以AB为直径的圆O交BC于点P,过点p作园o的切线pd交ac

证明:连接AP∵AB是⊙O的直径∴∠APB=90°∵AB=AC∴BP=CP(等腰三角形三线合一)∵AO=BO∴OP是△ABC的中位线∴OP//AC∵PD是⊙O的切线∴PD⊥OP∴PD⊥AC