在△ABC中,AB=AC,M为BC边中点,一等腰直角三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:26:07
在△ABC中,AB=AC,M为BC边中点,一等腰直角三角形
如图,在△ABC中,AB=AC,AC边上的高BD=10,P为BC边上任意一点,PM⊥AB,PN⊥AC,垂足为M、N,PM

做辅助线过B点作AC的平行线次NP的延长线于G所以四边形BGND为矩形又根据平行等条件,三角形PGB与PMB全等PG=PM所以PM+PN=PD

如图,在△ABC中,AB=4,AC=3,M,N分别为AB,AC的中点,BN,CM交于O

AO的长为√5方法为延长CM,BN形成平行四边形,利用勾股定理求解

在△ABC中,AD是△ABC的角平分线,M为BC中点,过M作MN∥AD交AC于N,若AB=4,AC=7,求NC的长

过B作BE∥AD交CA延长线于E,则∠CAD=∠E,∠BAD=∠ABE,∵∠CD=∠BAD,∴∠E=∠ABE,∴AE=AB,∵AD∥MN,∴BE∥MN,又M为BC的中点,∴MN是ΔBCE的中位线,∴C

在△ABC中,向量AB=(-2,3),向量AC=(1,m),若B为直角,求实数m的值

BC=AC-AB=(3,m-3)因为,B为直角,即AB垂直BC所以,AB*BC=0-2×3+3*(m-3)=0解得m=5

已知 如图 在△abc中ab=ac为△abc的角平分线,m,n分别为ab,ac的中点,连接dm,dn,求证 dm=dn

因为AB=AC,M,N为中点,所以AM=AN;因为AD为角平分线,AD=AD,所以三角形ADM全等于三角形ADN,所以DM=DN

如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点 如果点M,N分别在线段AB,

依题意易得△ABC为等腰直角三角形.连接AO.因为O是BC的中点.所以AO=1/2BC=BO=COAO=BO(S)∠OAN=∠B=45(A)BM=AN(S)根据SAS,△OBM全等于△OAN.所以MO

如图,在RT△ABC中,AB=AC,∠A=90°,M为BC中点,D为AC上任意一点,连结DM,过M作DM的垂线交AB于E

连接AM因为三角形ABC为等腰直角三角形,M为BC中点所以角MAD=角BAM为45度因为角B为45度所以角B=角MAD=角BAM所以BM=AM因为角BME+角AME=90度(三线合一)角AMD+角AM

在三角形ABC中,AB=BC,角ABC=20°,在AB边上取一点M,使得BM=AC,则角AMC的大小为多少

设腰a,底边b两次正弦定理a/sin80=b/sin20(a-b)/sin(180-80-θ)=b/sinθ自己算吧

已知:在△ABC中,AB=AC,AD为△ABC的角平分线,M,N分别为AB,AC的中点,连结DM,DN,求证DM=DN

第一个问题:B的战场∥MN支付G.∵BM=CM,BG∥MN,∴CN=GN,∴AG+AN=CE+ENCA的延长线,和AN=EN∴AG=行政长官,和AB=CE,∴AG=AB,∴∠G=∠ABG.由三角形外角

如图,在△ABC中,已知∠BAC为90°,AB=AC.M为△ABC内一点,且BA=BM,AM=CM

∠ABM=30°过M作AB的垂线MD,过M作AC的垂线ME1)AM=CM,ME⊥AC=>AE=EC,即AE=(1/2)AC=(1/2)AB2)显然四边形ADME是矩形,于是MD=AE=(1/2)AB3

已知:如图,在△ABC中,AB=AC,M是BC的中点,MD⊥AB,ME⊥AC,DF⊥AC,EG⊥AB,垂足分别为点D、E

证明:四边形MDPE为菱形,理由:连接AM.∵ME⊥AC,DF⊥AC,∴ME∥DF,∵MD⊥AB,EG⊥AB,∴MD∥EG,∴四边形MDPE是平行四边形;∵AB=AC,M是BC的中点,∴AM是角平分线

已知在三角形ABC中,AB+AC=9cm,AB和AC的夹角为

解题思路:二次函数探求函数的最值.解题过程:最终答案:略

如图,在△ABC中,AB=AC,点M、N分别为边AB、AC的中点,点D、E为BC上的点,连接DN、EM交于点O,若AB=

连接MN因为M、N是中点,所以MN为中位线所以MN平行BC且等于1/2BC等于5所以三角形MNO全等于三角形DEO通过已知可知三角形ABC的高h=12所以三角形AMN的高h'=6三角形ODE的高=三角

在三角形ABC中,AB=8,BC=6,AC的垂直平分线MN交AB,AC于点M,N.则三角形BCM的周长为?

因为MN垂直平分AC所以AM=CM(垂直平分线上一点到线段两端距离相等)所以ABBC=AMBMBC=MBMCBC=86=14即三角形BCM周长为14.

如图在△ABC中,AB=AB,∠B=90°BD=CE,M为AC边的中点,求证:△DEM是等腰三角形

连接BM,由△ABC是等腰直角三角形,∠ABM=∠ACB=45°,又M是AC的中点,∴BM=1/2AC=CM,∵CE=BD,∴CME≌BMD∴ME=MD,∠CME=∠DMB则∠CME+∠BME=∠DM

如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.

(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+

已知:Rt△ABC中,∠ACB=90°,AC=BC,D为AB的中点,M,N在AC,BC上,且AM=CN

∵AC=BC、∠ACB=90°,∴∠B=45°.∵∠ACB=90°、AD=BD,∴CD=BD,∴∠BCD=∠B=45°,∴∠DCM=45°.∵AC=BC、AM=CN,∴CM=BN.由CM=BN、CD=

已知在△ABC中,AB=AC,圆O为△ABC的外接圆,CD为圆O的直径,DM//AC交AB于M.

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B