在△ABC中,AB=AC,M为BC边中点,一等腰直角三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:26:07
做辅助线过B点作AC的平行线次NP的延长线于G所以四边形BGND为矩形又根据平行等条件,三角形PGB与PMB全等PG=PM所以PM+PN=PD
AO的长为√5方法为延长CM,BN形成平行四边形,利用勾股定理求解
过B作BE∥AD交CA延长线于E,则∠CAD=∠E,∠BAD=∠ABE,∵∠CD=∠BAD,∴∠E=∠ABE,∴AE=AB,∵AD∥MN,∴BE∥MN,又M为BC的中点,∴MN是ΔBCE的中位线,∴C
BC=AC-AB=(3,m-3)因为,B为直角,即AB垂直BC所以,AB*BC=0-2×3+3*(m-3)=0解得m=5
因为AB=AC,M,N为中点,所以AM=AN;因为AD为角平分线,AD=AD,所以三角形ADM全等于三角形ADN,所以DM=DN
依题意易得△ABC为等腰直角三角形.连接AO.因为O是BC的中点.所以AO=1/2BC=BO=COAO=BO(S)∠OAN=∠B=45(A)BM=AN(S)根据SAS,△OBM全等于△OAN.所以MO
连接AM因为三角形ABC为等腰直角三角形,M为BC中点所以角MAD=角BAM为45度因为角B为45度所以角B=角MAD=角BAM所以BM=AM因为角BME+角AME=90度(三线合一)角AMD+角AM
设腰a,底边b两次正弦定理a/sin80=b/sin20(a-b)/sin(180-80-θ)=b/sinθ自己算吧
第一个问题:B的战场∥MN支付G.∵BM=CM,BG∥MN,∴CN=GN,∴AG+AN=CE+ENCA的延长线,和AN=EN∴AG=行政长官,和AB=CE,∴AG=AB,∴∠G=∠ABG.由三角形外角
∠ABM=30°过M作AB的垂线MD,过M作AC的垂线ME1)AM=CM,ME⊥AC=>AE=EC,即AE=(1/2)AC=(1/2)AB2)显然四边形ADME是矩形,于是MD=AE=(1/2)AB3
证明:四边形MDPE为菱形,理由:连接AM.∵ME⊥AC,DF⊥AC,∴ME∥DF,∵MD⊥AB,EG⊥AB,∴MD∥EG,∴四边形MDPE是平行四边形;∵AB=AC,M是BC的中点,∴AM是角平分线
题目出错,AB=2根号五,若点M为AB的中点,那AM=根号五
解题思路:二次函数探求函数的最值.解题过程:最终答案:略
连接MN因为M、N是中点,所以MN为中位线所以MN平行BC且等于1/2BC等于5所以三角形MNO全等于三角形DEO通过已知可知三角形ABC的高h=12所以三角形AMN的高h'=6三角形ODE的高=三角
因为MN垂直平分AC所以AM=CM(垂直平分线上一点到线段两端距离相等)所以ABBC=AMBMBC=MBMCBC=86=14即三角形BCM周长为14.
连接BM,由△ABC是等腰直角三角形,∠ABM=∠ACB=45°,又M是AC的中点,∴BM=1/2AC=CM,∵CE=BD,∴CME≌BMD∴ME=MD,∠CME=∠DMB则∠CME+∠BME=∠DM
(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+
∵AC=BC、∠ACB=90°,∴∠B=45°.∵∠ACB=90°、AD=BD,∴CD=BD,∴∠BCD=∠B=45°,∴∠DCM=45°.∵AC=BC、AM=CN,∴CM=BN.由CM=BN、CD=
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B