在△abc中,ab=11 ac=60 bc=61,ad垂直于bc,求ad
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:03:38
本题分两种情况:①下图左边的图时,AD为BC边上的高.由AB=2,AC=2,∠B=30°得,AD=ABsinB=2×0.5=1,∵sin∠ACD=AD:AC=1:2=22,∴∠ACD=45°=∠B+∠
,△ABC的周长=27,AB+AC+BC=27BC=27-AB-AC=27-12-12=3Cm
(1)角BAD=40,则角EDC=20角BAD=30则角EDC=15度(2)角EDC=1/2角BAD(3)同样存在.证明如下:设角BAD=x,角ABC=y则角DAC=180-2y-x等腰三角形ADE,
证明:因为AB=AC,所以三角形ABC是等腰三角形;由
腰长:10底:1还不知道,百度HiM我
由AD垂直于BC得:AB平方-BD平方=AC平方-DC平方,可得(AB+BD)(AB-BD)=(AC+DC)(AC-DC)又已知AB+DC=AC+DB则AB-DB=AC-DC,可得AB+BD=AC+D
解题思路:二次函数探求函数的最值.解题过程:最终答案:略
解题思路:本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△AB
图中的P点应为D点.证明:在AB上取一点E,使得AE=AC,连接ED. 很容易证明△AED全等△ACD 所以有AB-AE=BE,DE=DC 在△BDE中:BE>BD-DE(两边之差小于第三
做补助线三角形BC边的高AD,则S△ABC=3/16BC*AB=1/2BC*AD,得AD:AB=3:8.sinB=AD:AB=3/8.
解题思路:通过作辅助线AD⊥BC,可将求△ABC外接圆的半径转化为求Rt△BOD的斜边长.解题过程:解:如图,作AD⊥BC,垂足为D,所以AD==8;设OA=r,OB2=OD2+BD2,即r
∵AB=ACAD=BD∴∠B=∠C=∠BAD∵△ADE是等边三角形∴∠DAC=60°∵∠B+∠BAD+∠DAC+∠C=180°∴3∠C+60°=180°∠C=40°∵∠DEC=180°-60°=120
解1:因AB是员直径,所以角ADB=90,即AD垂直于BC.因AB=AC,且AD垂直BC,AO=DO,所以角CAD=角BAD=角ADO.因AC垂直EF,因此角CAD+角ADE=角AED=90又因CAD
在三角形AEC中利用余弦公式求出CE与AC的关系.再根据三角形BEC周长为20,BC=9,即可求出BE长度从而三角形ABC的周长=AC+AB+BC=4BE+BC即可求出!
10°设∠B度数为X,AB=AC.∠C也为X∠DAE=180-2X-20因为AD=AE,∠AED=(180-∠DAE)/2=X+10∠AED是三角形ECD的外角,∠AED=∠CDE+∠C即∠CDE+X
如图由余弦定理得:cosB=AB2+BC2−AC22AB•BC=22+(1+3)2−(6)22×2×(1+3)=12,因为B∈(0,π),所以B=π3,故AD=ABsinπ3=2×32=3.故答案为:
因为AB=AC,角A=36度所以角ABC=角ACB=72度因为CD平分角ACB所以角BCD=角DCA=36度因为角A=36度所以角BCD=角A因为角DBC=角ABC所以三角形CDB相似于三角形ABC所
(1)AB=ACAB+AD=15,AC=2CD=2ADBC+CD=16AB=AC=10BC=11这个等腰三角形的腰长和底边长是10和11(2)AB=ACAB+AD=16,AC=2CD=2ADBC+CD
∵由余弦定理得cosA=9+4−102×3×2,∴cos∠CAB=14,∴AB•AC=3×2×14=32,故选D
1.△ABC∽△DEF应该很好判断AB=AC、DE=DF、