圆O的直径AB为10厘米,BC为6厘米
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:53:29
25-16=9答案=3再问:还是不会可以详细写吗?再答:10/2=58/2=45*5-4*4=3*3UNDERSTAND?
AB为直径,其对应的圆周角∠ACB=90°△ABC为直角三角形AC^2+BC^2=AB^2解得BC=8因为CD平分∠ACB,所以,∠BCD=45°,而∠BCD=∠BAD(同一弧段对应的圆周角相等)∠A
op大与等于3,小于等于5
从a点向bc边做垂线,垂足为d,又因三角形ABC为等腰三角形,所以bd=cd,连接bo,在三角形bod中,bo=5,bd=4,所以od=3所以ad=5+3=8三角形abc面积=8*8/2=32
你的问题呢问题是什么啊
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
有两个答案:22cm或8cm先画图:一种是ab和cd在直径的同侧;另一种是ab和cd分别在直径的两侧.但只要解决ab和cd与直径的距离,就解出来了.连接ao,co,再连接o和ab的中点e,cd的中点f
证明:(1)连接AD∵AB是⊙O的直径∴∠ADB=90°∵AB=AC∴BD=DC(2)连接OD∵BD=DC,OA=OC∴OD‖AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线
连接CD则CD垂直ABCD垂直平分AB,平分角BCABD=6CD=8连接BG则BF垂直AC,BG平行EFBG*AC=AB*CDBG=12*8/10=9.6CG方=BC方-BG方=10方-9.6方=19
证明如下:连结AC.∵AB是直径,∴AC⊥CB.∵BC=PC,∴RT⊿ACB≌RT⊿ACP(RT⊿即直角三角形).∴AB=AP.且∠P=∠B.又∵∠D=∠B(同弧所对圆周角相等)∴∠P=∠D,故⊿PC
解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,
∵AB⊥CD,AB为直径,∴CE=1/2CD=3,连接OC,则OC=1/2AB=5,∴OE=√(OC²-CE²)=4,∴BC=√(BE²+CE²)=3√10,A
连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB
因为三角形ABC的面积为:AC22=8×42=16(平方厘米),所以AC2=16×2=32;所以红色部分的面积是:90360×π×AC2-16,=14×3.14×32-16,=25.12-16,=9.
6*2*3.14÷2=18.84cm这是小圆的周长的一半10*2*3.14÷2=31.4cm这是大圆的周长的一半(10-6)*2=8cm18.84+31.4+8=58.24
因为:圆O的直径为8所以:OC=4因为:OA等于OB,AB与圆O相切与点C所以:三角形OAB是一个等边三角形,且C为AB中点,OC垂直于AB所以:AC=BC=5所以:OA=根号(OC的平方+AC的平方
平行弦AB、CD间的距离1或7再问:要过程再答:过圆心O做两条平行玄AB、CD的垂线分别交于E、F.连接OE,OF,OA,OC,当两条平行玄AB、CD在圆心的同侧时,平行弦AB、CD间的距离:OF-O
(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图
0.5π*16-(0.25π*32-16)再问:能不能解释一下,看不懂呢再答:你可以这么想就是。半圆的面积-阴影部分的面积=扇形ACB面积-三角形ABC面积。其实半圆的面积=扇形ACB面积,也可以推出
总体思路是证明三角形CBA相似于三角形DBC,连接AC,延长CO交圆于E点,连BE,因为角BCD+角BCE=角BCE+角ACE=90度;所以角BCD=角ACE;又由圆的性质知:角ACE=角ABE(同一