圆o是三角形abc的外接圆,ab为圆o的直径,弦cd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:51:36
解题思路:连接OC.根据圆周角定理求得∠AOC=2∠B,再根据等腰三角形的性质和三角形的内角和定理即可求解.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.Open
(1)证明:根据切割线定理可知:FD•FA=FC•FB∵∠F=∠F,∴△FDC∽△FBA,∴∠CDF=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠ACB(所对的
题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3
sinB=1.8/3sinB=2/2R正弦定理得R=5/3
由正弦定理:SinB/AC=2rSinB/2=3所以SinB=6
过点A作AB//BC诡异的条件~
连接BI∵I是△ABC的内心∴∠BAI=∠CAI,∠ABI=∠CBI.弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI∠IBE=∠IBC+∠EBC∴∠EBI=∠EIB∴EB=EI
题目不完整,题目是不是这样?圆O是三角形ABC的外接圆,AD是BC边上的高,已知BD=8,CD=3,AD=6,求圆O的面积为多少?记住定理:设外接圆半径为R,三边长为a,b,c,S为三角形面积则有关系
在三角形ABC形中,cosA=1/3.===>sinA=(2√2)/3.设外接圆半径为r,则由正弦定理知,2r=|BC|/sinA=2/[(2√2)/3]=3/√2.===>r=3/(2√2).===
证明:连OB,并延长OB交圆O于M,连MC,因为∠A和∠BMC所对的弧为BC所以∠A=∠BMC,因为∠A=∠CBD所以∠BMC=∠CBD因为BM是直径所以∠BCM=90°所以∠BMC+∠MBC=90°
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
角boc=55*2=110度.同弧所对圆心角是圆周角的二倍.再问:能详细点吗==表示生病了-没去学校再答:顶点在圆心的角,叫做圆心角。圆心角α的取值范围是0°
证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以
用两边中垂线的交点求AB的中垂线为y=3BC中点为(4.5,1.5),BC斜率-1/9,其中垂线斜率9,点斜式y-1.5=9(x-4.5)交点为(14/3,3),即为圆心坐标
∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过
连接BO,CO,角BOC是圆心角,和∠BAC是同弧,所以较BOC为60°,所以,半径为2cm,直径4cm
O是外心,则|OA|=|OB|=|OC|=R,若OA+OB+OC=0,则-OA=OB+OC平方,得 OA²=(OB+OC)²即OA²=OB²+OC²+
直接告诉你一个结论:正弦定理:在△ABC中,角A、B、C所对的边分别为a、b、c,则有 (a/sinA)=(b/sinB)=(c/sinC)=2R(R为三角形外接圆的半径)所以:2/sinC=2RR
(1)证:连接DB.三角形AFD和三角形ADB中,因为,角ADF=角ABD(弦切角定理),角FAD=角DAB(角平分线性质),所以,角AFD=角ADB=90度(直径对应的圆周角为90度),因而AF垂直
(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+