回归分析中某个因素t值或者p值是什么意思
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:08:40
要看每一个自变量的sig是否小于0.05,只要有一个不满足,则应选择STEPWISE方法,重新计算.
因为你不会spss操作,但是在那里乱在点我经常帮别人做这类的数据统计分析的再问:会不会是数据有问题造成的呢
就是你自己说的那个意思进入回归方程中的说明对因变量有影响,影响的大小要看标准化回归系数,未进入回归方程的可以理解为对因变量没影响,当然前提是你的数据符合回归分析的条件同时数据质量可靠
常量sig值高于0.05这个回归仍然有效,这仅仅表明线性回归的截距项可以被设定为0,也就是经过原点.但是,如果你将截距项设为0,则该方程的拟合优度指标值(R的平方)将是不准确的,即使你重新拟合.再问:
可以回归分析之后会得出每个因子的回归系数,而这个回归系数的大小就可以说明因子对因变量的影响大小.不过首先要看每个回归系数后面的显著性检验.如果不显著的话直接pass掉如果显著了,再看回归系数的大小来判
T是统计量的值,由于T分布的特性是:取值离远点越远,取到这个值的可能性越小.而在回归分析里,我们的检验的假设是“X的系数=0(当此时,X和Y无关)”,所以T值(的绝对值)越大越好,因为越大,就说明检验
F值和T值多少没有绝对的标准的.主要是看你的回归模型是否合理.在进行回归分析之后还要进行残差分析,看模型是否存在异方差,自相关,多重共线性等问题.若是存在异方差、自相关等问题,有可能会高估t值,F检验
在这地方有些说不清楚,我给你找到这个例子,说的比较明白,你看看:http://blog.sina.com.cn/s/blog_4af3f0d20100byr9.html
就是说自变量间相互存在一定的共线性,所以在使用多自变量进行回归时,会自动剔除一些存在共线影响的自变量再问:我怀疑abc之间有共线性,那如果我要看有没有显著的共线性,是每次只引入一对相互作用的变量,如只
wald下就为wald值sig.下就为所求的P值
p值大于0.05表示回归模型不显著,也就是说你的回归模型不能解释足够多的变异来源想要更多的了解,建议你参照Minitab软件再问:我的二元回归曲线方程中,一个因变量的P值小于0.05,另一个因变量的P
是不是偏相关系数啊
把你要分析的x放入自变量对话框,其他的作为协变量输入到covariable对话框中,然后求出的回归系数即为哪个x与y的关系当然也可以采用偏相关的方式,把要分析的x和y输入到相关分析框中,把其余的协变量
t值没有多大意义最重要的是p
在做logistci回归的时候,软件分析的结果就会显示OR值和95%置信区间,OR值就是Exp
P值是拒绝原假设的值回归系数b是通过样本及回归模型通过SPSS计算得出的,是反映当自变量x的变动引起因变量y变动的量回归系数b的检验是t检验当P
CONFICIENS 中的B 就是回归系数,另外应注意SIG值应小于0.05,MODEL SUMMARY中的Adjusted R square&nbs
logistic回归模型,主要是用来对多因素影响的事件进行概率预测,它是普通多元线性回归模型的进一步扩展,logistic模型是非线性模型.比如说我们曾经做过的土地利用评价,就分别用多元线性回归模型和
你再用SPSS做回归时,在选择因变量与自变量的那个窗口的右边,有“选项”这个按钮,点进去有选择是0.05还是其他数值,默认的应该是0.05
判断数据是否独立的数值,2左右就是独立统计专业,为您服务