四面体A-BCD中,∠ABC=∠ABD=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 02:57:52
四面体A-BCD中,∠ABC=∠ABD=
在四面体ABCD中,AB=AC=1,∠BAC=90°,AD=√3,三角形BCD是等边三角形

=AC=1,BAC=90度BC=根号2设A点坐标为(0,0),B为(0,1),C为(1,0)角ACD=4560=105度D坐标为(1根号2*cos75度,根号2*sin75度)直线AD的斜率为根号2*

在四面体A-BCD中,AB⊥CD,AC⊥BD,证明AD⊥BC

过点B作CD的垂线,垂足为M则平面ABM与线段CD垂直过点C作BD的垂线,垂足为N则平面ACN与线段BD垂直设BM和CN的交点为O,连接DO,并延长到BC,交BC于点P则DP⊥BC∵平面ABM和平面A

已知在四面体A-BCD 中,AB=a,CD=b,AB与CD间的距离为d,其所成的角为30度

做出来了,构造一个三棱柱∠BAD=30°或150°AB=a,CD=b三棱柱的高为d四面体B-CDB’,D-ABD'的体积是三棱柱的1/3所以四面体A-BCD的体积也是三棱柱的1/3而底面积=1

在四面体A-BCD中,AB=AD,CB=CD,试用向量方法证明:BD垂直AC

向量法:AC^2=(AB+BC)^2=(AD+DC)^2则有:AB^2+2AB·BC+BC^2=AD^2+2AD·DC+DC^2根据AB=AD,CB=CD整理两式得:AB·BC=AD·DC;AC·BD

如图,在Rt△ABC中,CD是斜边AB的高,求证:∠BCD=∠A.

证明:在Rt△ABC中,∠A+∠B=90°(直角三角形两锐角互余),∵CD⊥AB,∴∠CDB=90°,∴∠BCD+∠B=90°(直角三角形两锐角互余),∴∠A=∠BCD(同角的余角相等).

在四面体ABCD中,△ABC是正三角形,△BCD是等腰直角三角形,其中G为BC的中点,BD=DC=√2,二面角A-BC-

解,过点A作AE⊥平面BCD,由该四面体的性质可知,该点在DG的延长线上;AG=√3/2BC;BC=√2BD=2所以AG=√3/2*√2=√6/2在三角形AGD中,cosAGD=-√3/3;∠AGD+

在四面体A-BCD中,截面AEF经过四面体的内切球球心O,且与BC,DC分别截于E,F,如果截面将四面体分为

连OA、OB、OC、OD则VA-BEFD=VO-ABD+VO-ABE+VO-BEFD,VA-EFC=VO-ADC+VO-AEC+VO-EFC又VA-BEFD=VA-EFC而每个三棱锥的高都是原四面体的

棱长都相等的三棱锥(正四面体)A-BCD中,AO⊥平面BCD,垂足为O,设M是线段AO上一点,且∠BMC是直角,则AMM

延长BO,交CD于点N,可得BN⊥CD且N为CD中点设正四面体ABCD棱长为1,得等边△ABC中,BN=32,∵AO⊥平面BCD,∴O为等边△BCD的中心,得BO=33,Rt△ABO中,AO=63,设

已知在四面体A-BCD中,AB=a,CD=b,AB与CD间的距离为d,其所成角为90度,求这个四面体的体积

作AH⊥平面BCD,垂足H,连结并延长BH交CD于E,在平面ABE中作EF⊥AB,垂足F,AB⊥CD,(已知),根据三垂线逆定理,CD⊥BE,CD⊥平面ABE,四面体A-BCD体积分成二部分,即C-A

在四面体ABCD中,AB=AC=AD=BC=1,CD=根号2 ,且∠BCD=90度

设E为BD中点,连接AE,CE.下面证明AE垂直于面BCD:由AB=AD=1,E为BD中点,则AE垂直于BD在RT△BCD中,BD=(BC^2+CD^2)^O.5=根号3,E为BD中点,则CE=BE=

在四面体ABCD中,BD=√2a,AB=AD=CB=CD=AC=a 求证:平面ABD⊥平面BCD

取BD中点M,连AM,CM,则∠AMC为二面角A-BD-C的平面角,容易算得:AM=CM=√2a/2,在△AMC中,AM=CM=√2a/2,AC=aAM²+CM²=AC²

四面体ABCD中,AB=AC,BD=CD,平面ABC⊥平面BCD,EF为棱BC和AD的中点,AD⊥BC

证明:连结AE,DE因为AB=AC,BD=CD,点E是棱BC的中点所以AE⊥BC,DE⊥BC又AE和DE是平面ADE内的两条相交直线则由线面垂直的判定定理可得:BC⊥平面ADE因为AD在平面ADE内所

在四面体A-BCD中,共顶点A的三条棱两两互相垂直,且AB=AC=1,AD=2

∵四面体A-BCD中,共顶点A的三条棱两两互相垂直,且AB=AC=1,AD=2故四面体的外接球即为以AB,AC,AD为长宽高的长方体的外接球可求得此长方体的体对角线长为2则球半径R=1弦BD=3则co

四面体S-ABC中SA,SB,SC两两垂直,SA=a,SB=b,SC=c,则四面体的外接圆的半径为

相当于两个这样四面体底面重合成长方体外接于球,长对角线是外接圆的直径,半径=(a^2+b^2+c^2)/2.或者,三角形SAB中从S作边AB中线延长一倍到点D,CD是外接圆直径

如图,四面体P-ABC中,PA=PB=PC=2,∠APB=∠BPC=∠APC=30°.一只蚂蚁从A点出发沿四面体的表面绕

将四面体P-ABC的侧面沿PA剪下再展开,得到如图所示五边形(左图)∵四面体P-ABC中,PA=PB=PC=2,∠APB=∠BPC=∠APC=30°∴展开图中∠A'PA=3×30°=90°连接AA',

四面体A-BCD中EFGH分别为 AB BC CD DA中点(1)若AC=BD 求证EFGH为菱形 (2)AC平行于平面

四面体A-BCD中EFGH分别为ABBCCDDA中点(1)若AC=BD求证EFGH为菱形由四面体A-BCD中EFGH分别为ABBCCDDA中点,得EH//BD//FG,且EH=0.5BD=FGEF//

如图,在△ABC中,AB=AC,CD⊥AB,求证:∠A=2∠BCD

∵AB=AC∴∠b=∠acb.∵∠a=180°-2∠b∠b+∠bcd=90°所以∠b=90°-∠bcd∴∠a=180°-2(90°-2∠bcd)=180-180+2∠bcd∴∠a=2∠bcd