四边形ABCD为菱形,CD等于5,TAND=3分之4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:09:20
因为M,N,E,F分别为AD,BC,BD,AC的中点所以ME=0.5AB=FN,MF=0.5CD=EN因为AB=CD所以ME=FN=EN=MF所以四边形MENF为菱形
如图,若G在CB延长线上,且BG=BC,则四边形AGBD是矩形,理由如下:∵DE=EB=1/2AB,∴△ABD是直角三角形,且∠ADB=90°∵BG=BC=AD,且GC∥AD,∴四边形AGBD是平行四
正确.证明:∵AB=AD,∴点A在线段BD的中垂线上.又∵CB=CD,∴点C与在线段BD的中垂线上.∴AC所在的直线是线段BD的中垂线,即BD⊥AC;设AC,BD交于O.∵S△ABD=12BD•AO,
证明:∵AD⊥BD,E为AB的中点∴DE为Rt⊿ADB的斜边中线∴DE=½AB=BE∴∠EDB=∠EBD∵BC=CD∴∠CBD=∠CDB∵AB//CD∴∠EBD=∠CDB∴∠EDB=∠CBD
证明:∵AB=CD,AB//CD∴四边形ABCD是平行四边形∵CB=CD∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)
(1)在△ABC和△ADC中,AB=ADCB=CDAC=AC,∴△ABC≌△ADC(SSS),∴∠1=∠2;(2)∵AB=AD,∠1=∠2,∴AC⊥BD(等腰三角形顶角的平分线,底边的高线,底边的中线
证明:因:AB=BC=CD=AD则:AB=CD,BC=AD所以四边形ABCD中是平行四边形又因:AB=BC所以平行四边形ABCD中是菱形\x0d
证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=12AB,DE=12AB(直角三角形斜边上的中线等于斜边的一半),∴BE=DE,∴∠EDB=∠EBD,∵CB=CD,∴∠CDB=∠CBD
如题、如图可知AB//CD,∠①=∠②AD//BC, ∠②=∠③所以∠①=∠③.(1)∠④=∠⑤.(2)△ABC与△ADC有公共边AC所以得出:△ABC相等于△ADC所以AB=AD所以四边形
因为,EF是三角形ABC的中位线所以,EF=1/2AC并且EF平行AC同理可证HG=1/2AC并且HG平行AC所以EF平行且等于HG得到四边形EFGH是平行四边形连接EGFH易得到EG=ADFH=AB
求证四边形BEDF为平行四边形吧?菱形好像不大可能平行四边形就好证了因为AB平行等于BCAE=CF所以BE平行等于DF所以四边形BEDF为平行四边形
1)证明:∵菱形∴AB=BC=CD,BE=BG∵AB=2BE∴BC=2BE=2BG∴CG=BG=BE∵CD∥AB∴∠DCG=∠CBE∴⊿DCG≌⊿CBE∴DG=CE连接BD.∵菱形∴∠ABD=1/2∠
连接AC、BD,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EH=1/2BD,HG=1/2AC,EH∥BD,HG∥AC,FG∥BD,EF∥AC,∴EH∥FG,HG∥EF,∴四边形EFGH是平
反证法,如图,假设ABCD没有内切圆,作三角形ABE的内切圆,过C作圆的切线CD',那么有AU=AV,D'V=D'X,CX=CY,BY=BU所以AV+D'V+CY+BY
解法1:因AB=BC=CD=DA所以四边形ABCD是菱形(根据:四条边都相等的四边形是菱形)解法2:因AB=CD,BC=DA所以四边形ABCD是平行四边形又AB=BC所以四边形ABCD是菱形(根据:有
四边形ABCD两对角线AC、BD相等
添加的条件:AC=BD理由:E、F是AB,BC中点,EF是△BAC中位线,EF//AC,EF=1/2ACG、H是CD,DA中点,GH是△DAC中位线,GH//AC,GH=1/2AC所以四边形EFGH是
证明:∵E、F分别为AB、BC中点∴BE/BA=BF/BC=1/2又:角EBF=角ABC∴△EBF∽△ABC∴EF/AC=BE/BA=BF/BC=1/2∴EF=1/2AC同理:FG=1/2BD,GH=
解题思路:由AB∥CD,AB=CD,得四边形ABCD是平行四边形,再由AB=BC,得四边形ABCD是菱形解题过程:解:四边形ABCD是菱形理由:∵AB∥CD,AB=CD∴四边形ABCD是平行四边形∵A