3.y=x y试计算微分方程的通解与特解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 14:38:44
1.(dy/dx)-2xy=y+4x-2dy/dx=(2x-1)(y+2),dy/(y+2)=(2x-1)dx,ln(y+2)=x^2-x+C,y=e^(x^2-x+C)-2.2.y''+2y(y')
dy/dx=(1+y^2)/(xy)[y/(1+y^2)]dy=dx/x两边积分得1/2[ln(1+y^2)]+c1=ln|x|+c2,c1,c2为任意常数两边都以e为底数得1+y^2=cx^2,c为
这个是非齐次的一阶线性微分方程首先求它对应的齐次线性方程的y'-2xy=0,dy/dx=2xy,dy/y=2xdx,∫dy/y=∫2xdx,lny+C1=x²+C2,y=Ce^(x²
dy/dx=xy+x+y+1dy/dx=(x+1)(y+1)分离变量dy/(y+1)=dx*(x+1)两边积分ln(y+1)=(x²/2)+x+lnC两边取以e为底的幂y+1=Ce^[(x&
dhy2603,这题太容易了,xy'-ylny=0①,两边再对x求一次导得到y'+xy''-y'lny-yy'/y=0,即有xy''-y'lny=0②,联立两式得,ylny*y''/y'-y'lny=
设u=ln(xy)=lnx+lnydu=dx/x+dy/y原式化为dy/y+dx/x=ln(xy)dx/xdu=udx/xdu/u=dx/x得u=Cxln(xy)=Cx
令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³
∵xy"+y'=0==>xdy'/dx+y'=0==>dy'/y'=-dx/x==>ln│y'│=-ln│x│+ln│C1│(C1是积分常数)==>y'=C1/x∴y=∫C1/xdx=C1ln│x│+
注意左边可以写成(xy)'于是,原方程等价于(xy)'=x²+3x+2得xy=x³/3+3x²/2+2x+C得通解y=x²/3+3x/2+2+C/x
伯努利方程xy'+y=2y^3->x/y^3*y'+1/y^2=2令1/y^2=t-x/2*dt/dx+t=2解这个一阶方程得(2x^(-2)+c)*x^2
令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³
xdy+ydx-(x^2+3x+2)dx=0设dz(x,y)=xdy+ydx-(x^2+3x+2)dx∂z/∂y=x,z=xy+g(x),∂z/∂x=y
该微分方程只能用级数解法
答案,X=1Y=0或者X=0Y=1再问:是求微分。不是微分方程。答案是dxdy-3^(xy)•ln3(dx•ydy•x)=0再问:求过程
xy'+y=x^2(xy)'=x^2xy=x^3/3+Cy=x^2/3+C/x
xy'+y=xy^3(xy)'=xy*y^2令xy=u,y=u/x原式化为u'=u*(u/x)^2即du/u^3=dx/x^2两边对x积分得-1/2*1/u^2=-1/x+C1即1/(xy)^2=2/
再问:多谢!!!
答:xy''-y'=0(xy''-y')/x²=0(y'/x)'=0y'/x=2Cy'=2Cxy=Cx²+K再问:为什么第二步要除以X的平方呢?第三步又是怎么得出来的?对不起我很笨
令f(x)=x*y'f'=y'+xy''xf'=xy'+x^2y''=1f'=1/xf=lnx+c1xy'=lnx+c1y'=lnx(1/x)+c1/xy=1/2*(lnx)^2+c1*lnx+c2再