加减消元法{2x 3y=1 x 2y=5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:09:58
加减消元法{2x 3y=1 x 2y=5
已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,则x4+x3y+x2y2+xy3+y4=______

x2y+xy2=xy(x+y)=66,设xy=m,x+y=n,由xy+x+y=17,得到m+n=17,由xy(x+y)=66,得到mn=66,∴m=6,n=11或m=11,n=6(舍去),∴xy=m=

先化简,再求值(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.

(3x2y-2xy2)-(xy2-2x2y)=3x2y-2xy2-xy2+2x2y=5x2y-3xy2当x=-1,y=2时,原式=5×(-1)2×2-3×(-1)×22=10+12=22.

计算:[x(x2y2-xy)-y(x2+x3y)]÷3x2y.

[x(x2y2-xy)-y(x2+x3y)]÷3x2y,=(x3y2-x2y-x2y-x3y2)÷3x2y,=-2x2y÷3x2y,=-23.

2(x2y+xy)-3(x2y+xy)-4x2y其中x=-2,y=12

原式=2x2y+2xy-3x2y-3xy-4x2y=-5x2y-xy当x=-2,y=12时,原式=-9.

已知x-y=1,求代数式x4-xy3-x3y-3x2y+3xy2+y4.

原式=(x4-xy3)+(y4-x3y)+(3xy2-3x2y)=x(x3-y3)+y(y3-x3)+3xy(y-x)=(x3-y3)(x-y)-3xy(x-y)=(x-y)(x3-y3-3xy)=(

计算:(2x3y)

原式=4x29y2•27y364x3•4xy=34x2.故答案为34x2.

先化简后求值:4x2y-[6xy-3(4xy-2)-x2y]+1,其中x=2,y=-12

原式=4x2y-6xy+3(4xy-2)+x2y+1=5x2y+6xy-5当x=2,y=-12时,原式=5×4×(-12)+6×2×(-12)-5=-21.

已知A=x3+3x2y-5xy2+6y3-1,B=y3+2xy2+x2y-2x3+2,C=x3-4x2y+3xy2-7y

A+B+C=(x3+3x2y-5xy2+6y3-1)+(y3+2xy2+x2y-2x3+2)+(x3-4x2y+3xy2-7y3+1)=(1+1-2)x3+(3+1-4)x2y+(-5+2+3)xy2

若x+y=-1,则x4+5x3y+x2y+8x2y2+xy2+5xy3+y4的值等于(  )

原式=x4+x3y+4x3y+x2y+4x2y2+4x2y2+xy2+4xy3+xy3+y4,=x3(x+y)+4x2y(x+y)+xy(x+y)+4xy2(x+y)+y3(x+y),=-x3-4x2

有这样一道题,计算(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2的值,其中x=0.25,y=-1;

(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2=2x4-4x3y-x2y2-2x4+4x3y+2y3+x2y2=2y3,因为化简的结果中不含x,所以原式的值与x值无关.

若x+y=1则代数式x4+6x3y—2x2y+10x2y2—2xy2+6xy3+y4的值等于_____

原式=(x^4-2x²y²+y^4)+6xy(x²+2xy+y²)-2xy(x+y)=(x²-y²)²+6xy(x+y)²

已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求x4+x3y+x2y2+xy3+y4的值.

方程ax^2+bx+c=0,判断这个方程有没有实数根,有几个实数根,就要用ΔΔ=b^2-4ac若Δ<0,则方程没有实数根Δ=0,则方程有两个相等实数根,也即只有一个实数根Δ>0,则方程有两个不相等的实

4x2y-{x2y-「3xy2 – 1/ 2(4x2y-8xy2)+x2y」}-5xy2

答案:2x^2y+2xy^2原式=4x2y-{x2y-[3xy2-2x2y+4xy2+x2y]}-5xy2=4x2y-{x2y-[7xy2-x2y]}-5xy2=4x2y-{x2y-7xy+x2y]}

计算:[x(x2y2-xy)-y(x2-x3y)]÷3x2y.

原式=(x3y2-x2y-x2y+x3y2)÷3x2y=(2x3y2-2x2y)÷3x2y=23xy-23.

已知(x-2)2+|y+1|=0,求5xy2-[2x2y-(3xy2-2x2y)]的值.

原式=5xy2-2x2y+3xy2-2x2y=8xy2-4x2y,∵(x-2)2+|y+1|=0,∴x-2=0,y+1=0,即x=2,y=-1,则原式=16+16=32.

(2x2y-2xy2)-[(-3x2y2+3x2y)+(3x2y2-3xy2)],其中x=-1,y=2.

原式=2x2y-2xy2-[-3x2y2+3x2y+3x2y2-3xy2]=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=2x2y-3x2y-2xy2+3xy2+3x2y2-3x2y

当x=-1,y=1时求代数式2x2y-(5xy2-3x2y)-x2的值

代入x=-1,y=1,2x^y-(5xy^-3x^y)-x^=2*(-1)^*1-{5*(-1)*1^-3*(-1)^*1}-(-1)^=2-(-5-3)-1=9备注:2^表示2的平方

化简求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=-1,y=1.

原式=2x2y+2xy-3x2y+3xy-4x2y=-5x2y+5xy,当x=-1,y=1时,原式=-5×(-1)2×1+5×(-1)×1=-5-5=-10.

化简求值:[x(x2y2-xy)-y(x2-x3y)]÷3x2y,其中x=3,y=-1.

原式=[x3y2-x2y-x2y+x3y2]÷3x2y=(2x3y2-2x2y)÷3x2y=23xy-23;当x=3,y=-1时,原式=23×3×(-1)-23=-83.

当x-y=1时,那么x4-xy3-x3y-3x2y+3xy2+y4的值是(  )

x4-xy3-x3y-3x2y+3xy2+y4=(x4-xy3)+(y4-x3y)+(3xy2-3x2y)=x(x3-y3)+y(y3-x3)+3xy(y-x)=(x3-y3)(x-y)-3xy(x-