判断级数n 2 (n 1)3^n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:12:14
判断级数n 2 (n 1)3^n
∑(2^n-1)/3^n判断级数收敛性

收敛.∑2^n/3^n是公比为2/3的等比级数,收敛.∑1/3^n是公比为1/3的等比级数,收敛.所以,原级数收敛.

判断级数∑3^n/n!敛散性

收敛,可用比值判别法.经济数学团队帮你解答.请及时评价.

判断此级数的敛散性:(n1-无穷)(-1)的n次方*根号下(n-根号n)-根号n 答案是发散.具体如何判断!

(-1)的n次方*根号下(n-根号n)-根号n当n是偶数时式子等于根号下(n-根号n)-根号n=[n-根号n-n]/[根号下(n-根号n)+根号n]=-根号n/[根号下(n-根号n)+根号n]-1/2

一个组合恒等式的证明 Σ(k=0,n)C(n1,k)C(n2,n-k)=C(n1+n2,n)

两组物品,一组n1个,一组n2个,从两组中一共取出n个方法1:C(n1+n2,n)方法2:第一组取0个,第二组取n个;第一组取1个,第二组取n-1个----------第一组取k个,第二组取n-k个-

判断级数+∞∑n=1 1/根号下n(n2+1)的敛散性

1/n^p级别的正项级数只要p严格大于1就是收敛,只要p等于1或者小于1就发散——这个结论不是一般都是可以直接用的吗?.1/根号(n(n^2+1))【因为n(n^2+1)=n^3+n>n^3所以1/(

N1 与 N2 相差是不是很大 好似很多人N1也不合格我现在12月考N3...觉得N5,4,3差不多看过N1完全不懂,N

其实差别也不算大,因为以前日语考试是4个级别的.现在变成5个级别了,N1把原来的一级水平的难度往上提升了一点,因此比起以前来现在的N1与N2的差距就变大了.同时无形当中N1与N2也是专不专业的重要标志

已知函数y=f(n),设f(1)=3,并且对于任意的n1、n2,都有f(n1+n2)=f(n1)(n2)成立

∵f(1)=3,对于任意的n1,n2∈N*,f(n1+n2)=f(n1)f(n2).∴f(2)=f(1+1)=f(1)f(1)=3^2=9,f(3)=f(2+1)=f(2)f(1)=3^2×3=3^3

n1=2,n2=++n1,n1=n2++ 执行后n1,n2的值

n2=++n1先作n1=++n1,此时n1=n1+1=2+1=3,再作n2=n1=3n1=n2++先作n1=n2=3,再作n2=n2++=n2+1=3+1=4执行后n1=3,n2=4

设f(1)=2,f(n)>0(n属于正整数)有f(n1+n2)=f(n1)f(n2),求f(n)

f(n)=2^nf(n)=f(n-1)*f(1)=f(n-2)*f(1)*f(1)=f(1)*f(1)*……*f(1)一共有n个=【f(1)】^n=2^n

高数平面及其向量问题向量n1=[1,-1,1] 向量n2=[3,2,-12]取法向量n=n1乘以n2=[10,15,5]

求向量的叉乘,可用行列式法则n=|ijk|用代数余子式展开,i,j,k代表方向|1,-1,1||3,2,-12|

6|(n+n1+n2+.nk),证明6|(n^3+n1^3+n2.nk^3)

要证明6|(n^3+n1^3+n2.nk^3),可以分为两步:1.证明(n^3+n1^3+n2.nk^3)是偶数对任意的一个整数x,与x^3同为奇数或同为偶数所以n+n1+n2+.nk与n^3+n1^

高中数学,二项式展开C(n1)+C(n2)+C(n3)...+C(nn)=? 答案:n2^(n-1)

C(n1)+2C(n2)+3C(n3)...+nC(nn)=nC(n-1,0)+nC(n-1,1)+nC(n-1,2)...+nC(n-1,n-1)=n2^(n-1)

判定级数∑(n-1,正无穷)1/(√3n2+2n)的敛散性

级数发散.lim(n→∞)1/√(3n^2+2n)/1/n=lim(n→∞)n/√(3n^2+2n)=lim(n→∞)1/√(3+2/n)=1/√3.∑1/n发散,所以级数∑1/√(3n^2+2n)发

判断级数 3^n*n!/n^n 的敛散性

对于这个级数,首先观察进行初步估计;可以尝试采用夹逼准则,发现没有办法计算.我们发现用an+1/an可以消去很多项,使得计算成为可能.那我们便作商,进行比值判别法.an+1/an=3[n/(n+1)]

c n0+2c n1+2^2c n2+2^3c n3+.+2^nc n n=?

再问:为什么等于(1+2)^n过程详细点谢谢再答:

用MATLAB实现函数stepseq(n0,n1,n2),使函数实现u(n-n0),n1

function[x,n]=stepseq(n0,n1,n2)%Generatex(n)=u(n-n0);n1

已知对任意n1,n2∈N*,有f(n1+n2)=f(n1).f(n2),f(1)=2

f(0+0)=f(0)f(0)f(0)=1f(1+11)=f(1)*f(1)f(2)=4f(3)=f(1+2)=2*4=8同理f(4)=16(2)猜测f(n)=2的n次方根据f(1)=2.成立令f(n

方程组N÷(v-u)=N2÷v N÷(v+u)=N1÷v详细写下过程求N与N1,N2的关

由1式:N=N1(1+u/v),即u/v=N/N1-1由2式:N=N2(1-u/v),即u/v=1-N/N2两式相减,消去u/v:N/N1-1-1+N/N2=0N(1/N1+1/N2)=2N=2N1N