分部积分求x cos^2xdx积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:36:52
1,xln(1+x^2)-∫2x^2/(1+x^2)dx=xln(1+x^2)-2∫(1-1/(1+x^2))dx=xln(1+x^2)-2(x-arctanx)2,设t=√x,x=t^2,dx=2t
先将(sinx)^2降次,如下:原式=∫x^2×(1/2-cos2x/2)dx再将x^2看成u,括号里的看成v',就有:=x^2×(x/2-sin2x/4)-∫2x·(x/2-sin2x/4)dx,再
再问:第二步怎么到第三步的?再答:
积分xcosx/2dx=积分2xdsinx/2=2xsinx/2-积分2sinx/2dx=2xsinx/2+4cosx/2
原式=xln(x²+1)-∫xdln(x²+1)=xln(x²+1)-∫2x²/(x²+1)dx=xln(x²+1)-2∫(x²+
再问:再问:第三题怎么做
∫sin^3xcos^2xdx=-∫sin^2xcos^2xdcosx=-∫(1-cos^2x)*cos^2xdcosx=-∫(cos^2x-cos^4x)dcosx=(1/5)*cos^5x-(1/
∫(1/x+lnx)e^xdx=∫1/x*e^xdx+∫e^xlnxdx=∫e^xdlnx+∫e^xlnxdx=e^x*lnx-∫lnxde^x+∫e^xlnxdx=e^xl*nx-∫e^xlnxdx
再问:好奇怪啊再问:我怎么算出来不是这个呢再问:再问:能帮我看看,哪儿错了吗再答:看不懂,把你写的用红笔标下吧再问:就是最后一步的时候再问:把—16/25…移到左边相加不应该是41/25吗再问:你写的
∫[0,π]sinx^(n-1)cosx^(n+1)dx=∫[0,π]sinx^(n-1)cosx^(n-1)*cosx^2dx=(1/2^n)∫[0,π](sin2x)^n[(1+cos2x)/2]
∵(e^x)'=e^x,x'=1∴dv=(e^x)'dx=e^xdxdu=x'dx=dx
∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc
这题方法有很多,你可以把cos^2x换成1-sin^2x4sin^2xcos^2x=4(sin^2x-sin^4x)sin^2x和sin^4x积分是有公式的.但是一般人估计也记不得,所以方法二:为了方
原式=∫x²d(e^x)=x²e^x-∫e^xd(x²)=x²e^x-2∫xe^xdx=x²e^x-2(x-1)e^x+c
∫x^2e^xdx=∫x^2d(e^x)使用分部积分法=x^2*e^x-∫e^xd(x^2)=x^2*e^x-∫2x*e^xdx=x^2*e^x-∫2xd(e^x)=x^2*e^x-2x*e^x+∫e
∫arctan(1/x)dx=∫(x)'arctan(1/x)dx=xarctan(1/x)-∫x*{1/[1+x^(-2)]}*[-1/x^2]dx=xarctan(1/x)+∫1/(x+1/x)d
详细积分过程,请见图片解答.点击放大,再点击再放大.