急求∫tan^(-1)(1/x)dx 及 ∫sin^6xcos^2xdx详细解答,且要用到分部积分法的~
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 21:43:32
急求∫tan^(-1)(1/x)dx 及 ∫sin^6xcos^2xdx详细解答,且要用到分部积分法的~
∫arctan(1/x)dx
=∫(x)'arctan(1/x)dx
=xarctan(1/x)-∫x*{1/[1+x^(-2)]}*[-1/x^2]dx
=xarctan(1/x)+∫1/(x+1/x)dx
=xarctan(1/x)+∫x/(x^2+1)dx
=xarctan(1/x)+ln(x^2+1)/2+C
∫sin^6(x)cos^2(x)dx
=sin^7(x)cosx/7-∫sin^7(x)*(-sinx)/7dx
=sin^7(x)cosx/7+(1/7)*∫sin^8(x)dx
=sin^7(x)cosx/7+(1/7)*∫sin^8(x)dx
=sin^7(x)cosx/7+(1/7)*∫sin^8(x)dx
=sin^7(x)cosx/7+(1/7)*∫sin^6(x)*[1-cos^2(x)]dx
所以(8/7)∫sin^6(x)cos^2(x)dx=sin^7(x)cosx/7+(1/7)*∫sin^6(x)dx
∫sin^6(x)cos^2(x)dx=sin^7(x)cosx/8+(1/8)*∫sin^6(x)dx
接下来,唉,就是递推
∫sin^6(x)dx=-cosxsin^5(x)-5∫sin^4(x)cos^2(x)dx
=-cosxsin^5(x)-5∫sin^4(x)[1-sin^2(x)]dx
=-cosxsin^5(x)-5∫[sin^4(x)-sin^6(x)]dx
所以∫sin^6(x)dx=(-cosxsin^5(x)/6-5/6∫sin^4(x)dx
∫sin^4(x)dx=[∫(1-cos2x)^2dx] / 4
=(3/8)x-(1/4)sin2x+sin4x/32+C
=(3/8)x-(3/8)sinxcosx-(1/4)sin^3(x)cosx+C
这下好看一点了,呼,呼,开始代入吧
∫sin^6(x)cos^2(x)dx
=(1/8)sin^7(x)cosx-(1/48)sin^5(x)cosx+5/192sin^3(x)cosx+15/384sinxcosx-15x/384+C
啊……终于写完了,也许你会奇怪答案怎么会这么长,这是因为我想尽量让这个式子整齐一些(都由sin^n(x)cosx组成),如果是sinx,sin2x,sin4x混合答案会短很多.简单的方法肯定是有的.
=∫(x)'arctan(1/x)dx
=xarctan(1/x)-∫x*{1/[1+x^(-2)]}*[-1/x^2]dx
=xarctan(1/x)+∫1/(x+1/x)dx
=xarctan(1/x)+∫x/(x^2+1)dx
=xarctan(1/x)+ln(x^2+1)/2+C
∫sin^6(x)cos^2(x)dx
=sin^7(x)cosx/7-∫sin^7(x)*(-sinx)/7dx
=sin^7(x)cosx/7+(1/7)*∫sin^8(x)dx
=sin^7(x)cosx/7+(1/7)*∫sin^8(x)dx
=sin^7(x)cosx/7+(1/7)*∫sin^8(x)dx
=sin^7(x)cosx/7+(1/7)*∫sin^6(x)*[1-cos^2(x)]dx
所以(8/7)∫sin^6(x)cos^2(x)dx=sin^7(x)cosx/7+(1/7)*∫sin^6(x)dx
∫sin^6(x)cos^2(x)dx=sin^7(x)cosx/8+(1/8)*∫sin^6(x)dx
接下来,唉,就是递推
∫sin^6(x)dx=-cosxsin^5(x)-5∫sin^4(x)cos^2(x)dx
=-cosxsin^5(x)-5∫sin^4(x)[1-sin^2(x)]dx
=-cosxsin^5(x)-5∫[sin^4(x)-sin^6(x)]dx
所以∫sin^6(x)dx=(-cosxsin^5(x)/6-5/6∫sin^4(x)dx
∫sin^4(x)dx=[∫(1-cos2x)^2dx] / 4
=(3/8)x-(1/4)sin2x+sin4x/32+C
=(3/8)x-(3/8)sinxcosx-(1/4)sin^3(x)cosx+C
这下好看一点了,呼,呼,开始代入吧
∫sin^6(x)cos^2(x)dx
=(1/8)sin^7(x)cosx-(1/48)sin^5(x)cosx+5/192sin^3(x)cosx+15/384sinxcosx-15x/384+C
啊……终于写完了,也许你会奇怪答案怎么会这么长,这是因为我想尽量让这个式子整齐一些(都由sin^n(x)cosx组成),如果是sinx,sin2x,sin4x混合答案会短很多.简单的方法肯定是有的.
急求∫tan^(-1)(1/x)dx 及 ∫sin^6xcos^2xdx详细解答,且要用到分部积分法的~
分部积分法求定积分求定积分∫ln(1+x^2)dx,积分区间 (0,1)求定积分∫arctan跟xdx,积分区间 (0,
利用分部积分法求∫x^2e^xdx.
用分部积分法求不定积分:∫[x/(1+x)^2]*e^xdx
∫(1/x+lnx)e^xdx…用分部积分法求…求详细过程
关于分部积分法的问题用分部积分法求不定积分∫xe^xdx 答案是这样分析的:令u=x,dv=e^xdx,则du=dx,v
用分部积分法求 积分x^2*e^xdx
积分∫xdx/[sin(x^2+1)]^2 dx=多少?
利用换元法与分部积分法求不定积分 (1)∫cos√X dx; (2)∫xcosx/sin三次方x dx
求∫(从0到1)xe∧2x dx的定积分?用分部积分法,
∫ln[x+(1+x^2)^(1/2)]dx(分部积分法怎么求)
定积分∫(arctsinx)^2dx ∫上1/2下0用分部积分法 求详细过程~