函数求导:ln根号X 根号lnx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:51:18
函数求导:ln根号X 根号lnx
根号下ln x求导√lnx 求导......

y=√(lnx)=(lnx)^(1/2)y'=1/2*(lnx)^(1/2-1)*(lnx)'=1/[2√(lnx)]*1/x=1/[2x√(lnx)]

求导arctany/x=根号[ln(x^2+y^2) ] .根号在ln外面的

两边对x求导得1/[1+(y/x)^2]*(y/x)'=1/[ln(x^2+y^2)]*[ln(x^2+y^2)]'1/[1+(y/x)^2]*(y'x-y)/x^2=1/[2ln(x^2+y^2)]

ln(x+根号下(1+x²))求导

导数=1/(x+根号下(1+x²))·(x+根号下(1+x²))'=1/(x+根号下(1+x²))·(1+x/根号下(1+x²))=1/根号下(1+x²

y=tan(ln根号下x^2-1)求导

再答:���Ϻ����

y=根号(1+ln^2*x) 求导

y=√(1+ln^2*x)y'=[1/2√(1+ln^2x)]*(2lnx)*1/x则lnxy'=----------------------x√(1+ln^2x)

y=ln(x平方+根号下x) 求导

再问:我居然想的那么复杂!!做来做去把自己做进去了!!谢谢你哦

求导数y=ln根号[(1-x)/(1+x)]

ln根号[(1-x)/(1+x)]y'=(1+x)/(1-x)*[(-1-x-1+x)/(1+x)^2]=-2/(1-x^2)

y=ln(根号1+x/1-x) 求导数

y'=[1/(根号1+x/1-x)]*(根号1+x/1-x)'=[1/(根号1+x/1-x)]*(1/2根号1+x/1-x)*[(1+x)/(1-x)]'=[1/(根号1+x/1-x)]*(1/2根号

y=ln(x+根号下x平方+2)求导

=[1+x/(x^2+1)^(1/2)]/[x+(1+x^2)^(1/2)]

复合函数y=ln(x-根号下x^2-1)求导

y'=1/[x-√(x^2-1)]×[1-x/√(x^2-1)]=1/[x-√(x^2-1)]×[(√(x^2-1)-x)/√(x^2-1)]=-1/√(x^2-1)

ln(根号下(x^2+1))怎么求导

即f(x)=1/2*ln(x²+1)所以f'(x)=1/2*1/(x²+1)*(x²+1)'=1/2*1/(x²+1)*2x=x/(x²+1)

求导ln(1+x+根号(2x+x^2))

ln′[1+x+√(2x+x2)]=1/[1+x+√(2x+x2)]×[1+(2+2x)/[2√(2x+x2)]=1/√(2x+x²)=√(2x+x²)/(2x+x²)1

求导:y=根号(x*lnx根号(1-sinx))

过程挺繁复的,只好逐步化简了.

求导:y=ln(x+根号下(1+x^2))

y'=1/(x+√(1+x²))*(x+√(1+x²)'(x+√(1+x²)'=1+1/[2√(1+x²)]*(1+x²)'=1+2x/[2√(1+x

求导ln根号下x方+7

利用对数性质,先化简,再求导 过程如下图: 

求导y=ln根号x+根号lnx

即y=0.5lnx+(lnx)^0.5所以求导得到y'=1/2x+0.5/[x*(lnx)^0.5]

求导:f(X)=ln(根号下x^2+1)

f(x)=ln√(x²+1)f'(x)=[1/√(x²+1)]*(√(x²+1))'=[1/√(x²+1)]*[1/2√(x²+1)]*(x²

函数f(x)=x-ln(x+根号(1+x^2),具体具体求导过程

f'(x)=1-[x+√(1+x^2)]'/(x+√(1+x^2)]=1-(1+2x/[2√(1+x^2)])/[x+√(1+x^2)]=1-[1+x/√(1+x^2)]/[x+√(1+x^2)]再问

y=ln根号下X 求导

y=ln√x=(1/2)lnxy'=1/(2x)再问:d()=1/根号下xdx括号内填什么再答:dy=(1/√x)dxy=∫(1/√x)dx=2√x+C(C是一个常数)