(x² mx 8)(x²-3x n)的展开式中不含x²和x³,则mn的值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:14:13
(x² mx 8)(x²-3x n)的展开式中不含x²和x³,则mn的值是
设X1>0,Xn+1=3+4/Xn,(x=1,2···),证明X趋向无穷时Xn存在,并求此极限

(先假设极限存在,设为x,则x=3+4/x,所以x=4,舍去x=-1)由归纳法知x[n]>0,进而x[n]>3(n>1)|x[n+1]-4|=|4/x[n]-1|=|4-x[n]|/|x[n]|1)所

已知数列xn中,x1=2,x(n+1)=f(xn),f(x)=3x/(x+3),则xn的通项

由题可得f(xn)=3xn/(xn+3),所以3xn/(xn+3)=x(n+1),两边同取倒数,(xn+3)/3xn=1/x(n+1)即1/3+1/xn=1/x(n+1),整理得1/x(n+1)-1/

记max{x1,x2,x3,...xn}为x1,x2,x3...xn中的最大数,设f(x)=2x-3,g(x)=-3x+

当f(x)》g(x)即2x-3》-3x+4,x》7/5时,Fx=2x-3,当x《7/5时,Fx=-3x+4.

若5x乘(xn一1+3)=5xn一9,求x的值

解题思路:主要考查你对整式的乘法等考点的理解,通过对比列出方程15X=-9.解题过程:解:因为,所以.解得.最终答案:略

已知函数f(x)=3x/(3+x),数列{Xn}中,Xn=f(Xn-1),若X1=1/2,求X100的值

f(x)=3x/(3+x)所以f(Xn-1)=3Xn-1/(3+Xn-1)也就是Xn=3Xn-1/(3+Xn-1)两边取倒数化简得到1/Xn=1/Xn-1+1/3故{1/Xn}为首项为2(首项是1/X

已知f(x)=3x/x+3,在数列{xn}中,xn=f(xn-1).若x1=1/2,求x100的值

这种问题要用倒数方法:x[n]=3x[n-1]/(x[n-1]+3);那么:1/x[n]=1/3+1/x[n-1];故:1/x[n]-1/x[n-1]=1/3;再用迭加法(首位相消):1/x[n]-1

已知函数f(x)=3x/x+3,数列{xn}的通项由xn=f(xn-1)(n≥2,且n∈N*)确定.(1)求证{1/xn

再答:不客气,有问题,请追问,懂了,请采纳!啊,最后结果打错,应该为1/35

已知数列{Xn}满足X2=X1/2,Xn=1/2(Xn-1+ Xn-2),n=3,4,…,若n趋于无穷大Xn趋于2,则X

都答的什么啊!垃圾,只想赚点分吧!看我的,最简单,最正确!答案:3嘿嘿!没错吧!错不了的,因为N年前我专门研究过此题!其实此题看透,超简单!看招!X2=X1/2;X3=1/2(X2+X1);X4=1/

已知数列xn满足x1=4,x(n+1)=(xn^2-3)/(2xn-4)

x(n+1)-3=(x2n-6xn+9)/(2xn-4)=(xn-3)2/2(xn-2)=(xn-2-1)2/2(xn-2)x(n+1)-3=(xn-2)/2-1+1/2(xn-2)≥1-1=0(xn

已知X(n+1)=(3+4Xn)/(2+Xn),求数列{Xn}的通项公式?

楼主,你好!如果你想构造数列的话可以使用待定系数法.就是设两边同时减一个数t,原式就化为X(n+1)-t=[(4-t)Xn+3-2t]/(2+Xn),然后让等号右边分子和等号左边式子的对应系数相等,解

已知3x(xn+5)=3xn+1+45,求x的值.

3x1+n+15x=3xn+1+45,∴15x=45,∴x=3.

已知f(x)=3x/(x+3),数列{Xn}中,Xn=f(Xn-1),设x1=1/2,则X100等于多少

因为Xn=f(Xn-1),所以(1/Xn)=(1/Xn-1)+(1/3)又因为(1/Xn)=2所以(1/Xn)为公差为1/3的等差数列所以1/Xn=2+(1/3)(n-1)所以Xn=3/(n+5)然后

已知f(x)=3x/x+3,数列{Xn}中,Xn=f(Xn-1),设x1=1/2,则X100等于多少

因为Xn=f(Xn-1),所以(1/Xn)=(1/Xn-1)+(1/3)又因为(1/Xn)=2所以(1/Xn)为公差为1/3的等差数列所以1/Xn=2+(1/3)(n-1)所以Xn=3/(n+5)然后

已知函数f(x)=3x/(x+3),数列Xn的通项由Xn=f(Xn-1)确定 求证{1/Xn}是等差数列.

Xn=f(Xn-1)即:Xn=3X(n-1)/[X(n-1)+3]1/Xn=1/3+1/X(n-1)所以:1/Xn-1/X(n-1)=1/3所以数列:{1/Xn}为等差数列,公差为1/3

已知f(x)=3x/x+3 数列{xn} xn的通项公式由xn=f(xn-1)确定 求{sn}

∵f(x)=3x/(x+3)且Xn=f[X(n-1)]x1=0.5=3/6;X2=f(X1)=3X1/(X1+3)=3/7X3=f(X2)=3X2/(x2+3)=3/8;X4=f(X3)=3X3/(X

已知函数f(x)=3x/x+3,数列{an}满足Xn+1(1是角数)=f(Xn),求证:1/Xn是等差数列

证:x(n+1)=f(xn)=3xn/(xn+3)1/x(n+1)=(xn+3)/(3xn)=1/xn+1/31/x(n+1)-1/xn=1/3,为定值.数列{1/xn}是等差数列.

已知f(x)=3x/x+3 数列{xn} xn的通项公式由xn=f(xn-1)确定 求X1

x(n+1)=f(xn)=3xn/(xn+3)x1是不确定的,少个条件.你任意取一个x1,就能构成一个数组.比如x1=1,数列为,>>x=1;fork=1:7x(k+1)=3*x(k)/(x(k)+3