二重积分e^(x^2 y^2)dxdy= 其中D;x^2 y^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:58:10
用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ∫∫xydxdy=∫∫r³cosθsinθdrdθ=∫[π/4→π/2]cosθsinθdθ∫[0→2sinθ]r
{x=rcosθ、y=rsinθe²≤x²+y²≤e⁴→e²≤r²≤e⁴→e≤r≤e²∫∫_[D]ln(x²
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
∫∫x^2e^(-y^2)dxdy=∫(0→1)e^(-y^2)dy∫(0→y)x^2dx=∫(0→1)e^(-y^2)*1/3*y^3dy=(1/3)∫(0→1)e^(-y^2)*y^2*(-1/2
分成两部分计算:∫∫bdσ表示一个圆柱的体积,圆柱的底圆为x²+y²≤a²,高为b,因此体积为:πa²b∫∫√(x²+y²)dσ表示一个圆柱
观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6
y=x与y=x^3在第一象限的交点为(1,1)该积分区域既是X-型的,又是Y-型的X-型:∫0到1∫x^3到x(e^x2)dydx=∫0到1(e^x2)(x-x^3)dx=1/2*[(2-x^2)*e
1∫∫e^-y2(即系e的-y^2次方),D由X=1,Y=1,X=Y所围成X=1,Y=1,X=Y不能围成区域,请楼主再检查一下.2∫∫(根号X)dxdy,D={(x,y)x^2+y^2≤x}∫∫(根号
对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y) 上下实
看来你得多了解极座标的原理再问:怎么确定r的范围呢?再答:极座标要求曲线是光滑,没有转角位的而这个正方形区域在右上角(1,1)这点不光滑(可理解为不可导)所以要在这点把折线割开为两条光滑的直线这两条直
关键是积分区域的处理! 另外膜拜一下一楼,这个题目也能用极坐标?
“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
换元法x=rcosax^2+y^2≤1所以0
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2
设x=rcosty=rsint-π/2
换成极坐标x=pcosty=psintp∈[0,a]t∈[0,2π]∫∫e^(-x^2-y^2)dδ=∫[0,2π]dt∫[0,a]e^(-p^2)pdp=t[0,2π]*[-1/2e^(-p^2)]
y=x及y=2x,y=1交点(1/2,1),(1,1)则∫∫e^y^2dσ=∫[0,1]∫[y/2,y]e^y^2dxdy=∫[0,1]e^y^2∫[y/2,y]dxdy=∫[0,1]e^y^2*y/