两个正态分布相加减,对应的期望和方差怎么变化

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:13:44
两个正态分布相加减,对应的期望和方差怎么变化
两个独立正态分布随机变量的线性组合还是正态分布,为什么?

两个独立正态分布随机变量的联合分布是二维正态分布,而二维正态分布的随机向量的线性组合还依然服从正态分布从而,……再问:为什么两个独立正态分布随机变量的联合分布是二维正态分布再答:独立,联合概率密度等于

概率论中的一道求正态分布的数学期望的题目

楼主的题目还是有问题,此题应该加上X,Y相互独立的条件.你可以先求出Z的密度再来求期望,但会比较麻烦.相信楼主手里的教材上一定有这样一道题目的在本题相同的条件下求W=max(X,Y)的期望,答案为:1

正态分布的数学期望是多少?

就是u据定义一算即可

下列不是正态分布数学期望的是()

第九题选125,第十题看不清楚哇,你在考统计学吗再问:第十题,你点一下就放大了,我没有考统计学,帮别人

两个独立的正态分布相加减 得到的还是正态分布么

是的只有相互独立的时候相加减得到的才能是正态分布

概率论的,两个随机变量的相加减的公式,服从正态分布

E(X1-2X2)=E(X1)-2E(X2)=0D(X1-2X2)=D(X1)+4D(X2)=4+16=20X1-2X2~N(0,20)

两个正态分布相加相乘还是正态分布吗?与这两个正态分布是否有关呢

相加后仍然是正态分布,只是平均值和标准差可能会改变.相乘后应该就不再是正态分布了.与原来的两个正态分布当然有关.

互相独立的x,y服从正态分布,为什么它们各自的数学期望乘积等于他们乘积的数学期望?

正态分布有一个性质是“独立和不相关等价”原题说x,y独立,所以他们相关系数是0;又因为Cov(x,y)=E(xy)-ExEy,原题的结论显然.

两个维数相同的矩阵对应元素相乘将结果相加属于什么运算

矩阵的点乘运算,在计算机语言里经常用的

正态分布中,期望已知,求方差的各种检验?

若期望u已知,利用(Xi-u)/&(方差)是标准正太的性质,那么它的平方属于塌方分布,在显著性水平条件下.即可找出其拒绝域!

X与Y是两个相互独立同分布且他们都服从标准正态分布,则X^2/(X^2+Y^2)的期望是多少

因为X^2/(X^2+Y^2)+Y^2/(X^2+Y^2)=1所以E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E(1)=1因为X、Y服从相同的分布,且相互独立,所以:E[X^2

求正态分布的数学期望和方差的推导过程

不用二重积分的,可以有简单的办法的.设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]其实就是均值是u,方差是t^2,百度不太好打公式,你将就看一下.于是:

相互独立的正态分布函数相加减,还是正态分布么?均值和方差的是怎样的?

是,比方书X服从N(a,b),Y服从N(c,d)那么X+Y服从N(a+b,c+d)X-Y服从N(a-b,c+d).

两个正态分布相互独立是两个正态分布的线性函数也是正态分布什么条件

两个独立正态分布的随机变量的线性组合仍服从正态分布.这是二维正态分布的边缘分布(不需要独立)的线性组合服从正态分布的特殊情况.因为若X,Y服从相互独立的正态分布,则(X,Y)服从二维正态分布(密度函数

用正态分布的公式怎样推导它的期望

设ξ服从N(μ,^2),求Eξξ的分布密度为φ(x)=1/[√(2π)σ]e^(-(x-μ)^2/(2σ^2))从而Eξ=∫(+∞)(-∞)x/[√(2π)σ]e^(-(x-μ)^2/(2σ^2))d