a1=1,2an+1=(1+1/n)^2*an 证明{an/n^2}为等比数列 求{an}通项公式 令bn=(an+1)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 06:19:29
a1=1,2an+1=(1+1/n)^2*an 证明{an/n^2}为等比数列 求{an}通项公式 令bn=(an+1),求数列{bn}的前n项和Sn
2a(n+1)=(1+1/n)^2a(n)
2^(n+1)a(n+1)=(n+1)^2[2^na(n)]/n^2
2^(n+1)a(n+1)/(n+1)^2=2^na(n)/n^2=...=2a(1)/1=2
a(n)=n^2/2^(n-1)
b(n)=a(n+1)=(n+1)^2/2^n=n(n+1)/2^n + (n+1)/2^n=c(n)+d(n)
c(n)=n(n+1)/2^n,d(n)=(n+1)/2^n
D(n)=d(1)+d(2)+...+d(n)=2/2 + 3/2^2 + 4/2^3 + ...+ (n-1+1)/2^(n-1) + (n+1)/2^n
2D(n)=2 + 3/2 + 4/2^2 +...+ (n-1+1)/2^(n-2) + (n+1)/2^(n-1)
D(n)=2D(n)-D(n)=2+1/2+1/2^2+...+1/2^(n-1) - (n+1)/2^n
=1-(n+1)/2^n + 2[1-1/2^n]
=3-(n+3)/2^n
C(n)=c(1)+c(2)+...+c(n)=1*2/2 + 2*3/2^2 + 3*4/2^3 + ...+(n-1)n/2^(n-1) + n(n+1)/2^n
2C(n)=1*2 + 2*3/2 + 3*4/2^2 + ...+ (n-1)n/2^(n-2) + n(n+1)/2^(n-1)
C(n)=2C(n)-C(n)=1*2 + 2(3-1)/2 + 3(4-2)/2^2 + ...+ n(n+1-n+1)/2^(n-1) - n(n+1)/2^n
=2+ 2[(1+1)/2 + (2+1)/2^2 + ...+ (n-1+1)/2^(n-1)] - n(n+1)/2^n
=2+2[D(n)-(n+1)/2^n] - n(n+1)/2^n
S(n)=C(n)+D(n)=2+2[D(n)-(n+1)/2^n] - n(n+1)/2^n + D(n)
=2-n(n+1)/2^n - 2(n+1)/2^n + 3D(n)
=2-n(n+1)/2^n -2(n+1)/2^n + 3[3-(n+3)/2^n]
=11-(n^2+6n+11)/2^n
2^(n+1)a(n+1)=(n+1)^2[2^na(n)]/n^2
2^(n+1)a(n+1)/(n+1)^2=2^na(n)/n^2=...=2a(1)/1=2
a(n)=n^2/2^(n-1)
b(n)=a(n+1)=(n+1)^2/2^n=n(n+1)/2^n + (n+1)/2^n=c(n)+d(n)
c(n)=n(n+1)/2^n,d(n)=(n+1)/2^n
D(n)=d(1)+d(2)+...+d(n)=2/2 + 3/2^2 + 4/2^3 + ...+ (n-1+1)/2^(n-1) + (n+1)/2^n
2D(n)=2 + 3/2 + 4/2^2 +...+ (n-1+1)/2^(n-2) + (n+1)/2^(n-1)
D(n)=2D(n)-D(n)=2+1/2+1/2^2+...+1/2^(n-1) - (n+1)/2^n
=1-(n+1)/2^n + 2[1-1/2^n]
=3-(n+3)/2^n
C(n)=c(1)+c(2)+...+c(n)=1*2/2 + 2*3/2^2 + 3*4/2^3 + ...+(n-1)n/2^(n-1) + n(n+1)/2^n
2C(n)=1*2 + 2*3/2 + 3*4/2^2 + ...+ (n-1)n/2^(n-2) + n(n+1)/2^(n-1)
C(n)=2C(n)-C(n)=1*2 + 2(3-1)/2 + 3(4-2)/2^2 + ...+ n(n+1-n+1)/2^(n-1) - n(n+1)/2^n
=2+ 2[(1+1)/2 + (2+1)/2^2 + ...+ (n-1+1)/2^(n-1)] - n(n+1)/2^n
=2+2[D(n)-(n+1)/2^n] - n(n+1)/2^n
S(n)=C(n)+D(n)=2+2[D(n)-(n+1)/2^n] - n(n+1)/2^n + D(n)
=2-n(n+1)/2^n - 2(n+1)/2^n + 3D(n)
=2-n(n+1)/2^n -2(n+1)/2^n + 3[3-(n+3)/2^n]
=11-(n^2+6n+11)/2^n
a1=1,2an+1=(1+1/n)^2*an 证明{an/n^2}为等比数列 求{an}通项公式 令bn=(an+1)
a1=1,a2=2,an+2=(an+an-1)/2,n∈N+,(1)令bn=an+1-an,证明bn是等比数列
已知数列{an}满足:a1+a2+a3+…+an=n-an 求证{an-1}为等比数列 令bn=(2-n)(an-1)求
已知数列{an}满足a1=1,a2=2,an+2=(an+an+1)/2,n∈N*.令bn=an+1-an,证明{bn}
数列an中,a1=2,an+1=3an-2,bn=an-1,求证bn为等比数列,求an通项公式(n+1为下标)
已知a1+a2+a3+.+an=n-an 求证an-1为等比数列 令bn=(2-n)(an-1) 如果对任意n
a1=1,a2=2,an+1=(an+an-1)/2,n∈N+,(1)令bn=an+1-an,证明bn是等比数列(2)求
已知数列an满足a1=2,an+1=2an-n+1,证明(an-n)是等比数列,并求出(an)通项公式
数列{an}的前n项和为Sn=n平方+n,(1)求an,(2)令bn=2的an次方,证明bn为等比数列,并求前n项和Tn
在数列an中,已知a1=2,an+1=2an/an +1,令bn=an(an -1).求证bn的前n项和
已知:an+sn=n.1、令bn=an-1,求证:{bn}是等比数列.2、求an
已知等差数列an的通项公式为an=1+2n,令bn=an的平方-1,求bn的前n项和