作业帮 > 数学 > 作业

如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 19:14:02
如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.
①过A的直线与斜边BC相交时,求证:EF=BE-CF
过A的直线与斜边BC不相交时[1]的结论还成立吗
若不成立,结论又是什么?说明理由
如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.
证明:(1)(2))∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,
∴∠CAF=∠ABE,
在△ABE和△ABF中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC=,BE=AF
∴EF=AF-CF.
(2)∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,
∴∠CAF=∠EBA,
在△ABE和△AFC中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∴EF=EA+AF.