设数列an满足a1=0且1/(1-an+1)-1/(1-an)=1,设bn=(1-根号an+1)/根号n,记Sn为bn的
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 23:37:21
设数列an满足a1=0且1/(1-an+1)-1/(1-an)=1,设bn=(1-根号an+1)/根号n,记Sn为bn的前n项和,证明Sn<1
证明:
令cn=1/(1-an),则c1=1/(1-a1)=1,所以:
c(n+1)-cn=1,是等差数列,即:
cn=c1+(n-1)=n,则:
an=(n-1)/n
bn=[1-√a(n+1)]/n
={1-√[n/(n+1)]} / n
=1/√n - 1/ √(n+1)
Sn=b1+...+bn=1-1/√2 +.+ 1/√n - 1/ √(n+1)=1- 1/ √(n+1)
n为正整数,所以上式中- 1/ √(n+1)
令cn=1/(1-an),则c1=1/(1-a1)=1,所以:
c(n+1)-cn=1,是等差数列,即:
cn=c1+(n-1)=n,则:
an=(n-1)/n
bn=[1-√a(n+1)]/n
={1-√[n/(n+1)]} / n
=1/√n - 1/ √(n+1)
Sn=b1+...+bn=1-1/√2 +.+ 1/√n - 1/ √(n+1)=1- 1/ √(n+1)
n为正整数,所以上式中- 1/ √(n+1)
设数列an满足a1=0且1/(1-an+1)-1/(1-an)=1,设bn=(1-根号an+1)/根号n,记Sn为bn的
设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,
已知数列an的n项和为Sn,且an+1=2Sn/an,a1=1 (1)求an (2)设数列bn满足(2an-1)(2bn
数列{an}和{bn}满足a1=1 a2=2 an>0 bn=根号an*an+1且{bn}是以公比为q的等比数列
设数列an前n项和为Sn,且an+Sn=1,求an的通项公式 若数列bn满足b1=1且bn+1=bn+an,求数列bn通
数列an的前n项和为Sn=2^n-1,设bn满足bn=an+1/an,判断并证明bn 的单调性
设数列{an}满足a1=0,4an+1=4an+2根号(4an+1)+1,令bn=根号(4an+1)
已知数列an满足;a1=1,an+1-an=1,数列bn的前n项和为sn,且sn+bn=2
数列{an}和{bn}满足a1=1 a2=2 an>0 bn=根号an*an+1
数列{an}和{bn}中,a1=1,a2=2,an>0,bn=根号(an*a(n+1))(n为正整数),且{bn}是以q
已知数列An满足An>0,其前n项和为Sn为满足2Sn=An的平方+An(1)求An(2)设数列Bn满足An/2的n次方
设数列{An}和{bn}满足A1=1/2,2nA(n+1)=(n+1)An,且Bn=ln(1+An)+1/2(An)2,