已知函数f(x)=x²-6x+8,x∈[1,a],并且发(x)的最小值为f(a),则实数a的取值范围、、
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 18:42:00
已知函数f(x)=x²-6x+8,x∈[1,a],并且发(x)的最小值为f(a),则实数a的取值范围、、
当x∈[1,a]时,f(x)的最小值为f(a)
则说明函数f(x)在区间[1,a]上单调递减
而f(x)=x²-6x+8,其对称轴为x=3,且图像开口向上
因此对称轴左侧单调递减,右侧单调递增
也就是说对称轴x=3在区间[1,a]的右侧,
因此a≤3
又a>1
∴1<a≤3
为什么答案不是a=3?
当x∈[1,a]时,f(x)的最小值为f(a)
则说明函数f(x)在区间[1,a]上单调递减
而f(x)=x²-6x+8,其对称轴为x=3,且图像开口向上
因此对称轴左侧单调递减,右侧单调递增
也就是说对称轴x=3在区间[1,a]的右侧,
因此a≤3
又a>1
∴1<a≤3
为什么答案不是a=3?
已知函数f(x)=x²-6x+8,x∈[1,a],并且发(x)的最小值为f(a),则实数a的取值范围
我来给你详细说明吧,你按照我的思路就明白了:
f(x)=x^2-6x+8
=(x-3)^2-1
则对称轴x=3,顶点纵坐标为-1
对于这个抛物线来说,在对称轴左侧单调递减,对称轴右侧单调递增.
因为1
再问: 为什么答案不是a=3? 3不是函数的最低点么?
再答: 题目的最小值是f(a)不是f(3), f(3)只是a的一个情况
我来给你详细说明吧,你按照我的思路就明白了:
f(x)=x^2-6x+8
=(x-3)^2-1
则对称轴x=3,顶点纵坐标为-1
对于这个抛物线来说,在对称轴左侧单调递减,对称轴右侧单调递增.
因为1
再问: 为什么答案不是a=3? 3不是函数的最低点么?
再答: 题目的最小值是f(a)不是f(3), f(3)只是a的一个情况
已知函数f(x)=x²-6x+8,x∈[1,a],并且发(x)的最小值为f(a),则实数a的取值范围、、
已知函数f(x)=x²-6x+8,x∈[1,a],并且发(x)的最小值为f(a),则实数a的取值范围
已知函数f(x)=x2-6x+8,x∈[1,a],并且函数f(x)的最小值为f(a),则实数a的取值范围是______.
已知函数f(x)=x-6x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是
已知二次函数y=x2-6X+8,X∈{1,a},并且函数f(x)的最小值为f(a),则实数a的取值范围是() x2是X平
函数f(x)=x^2-6x=8,x属于[1,a],并且f(x)的最小值为f(a)则实数a的取值范围是?
设函数f(x)=x^2+(x-a)|2x-a| a为实数) 1,若f(0)≥1,求a的取值范围1,求f(x)的最小值3,
函数f(x)=|x-a|在[0,1]上最小值为|a|,则实数a的取值范围是________.
已知函数f(x)=x2+3x-7,x属于【-1,a】,且f(x)的最大值为f(a),则实数a的取值范围
函数f(x)=(x-a的绝对值)在[0,1]上的最小值为a的绝对值,在实数a的取值范围是
已知函数f(x)=|x-a|-ax存在最小值,则实数a的取值范围是
已知函数f(x)=㏑x-(x+a)/﹙x-1﹚,(a为常数)若f(x)在[2,+∞)上单调递增,则实数a的取值范围为?