已知函数f(x)在(-1,1)上有意义,f(1/2)=-1且任意的x,y∈(-1,1)都有f(x)+f(y)=f((x+
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 19:39:46
已知函数f(x)在(-1,1)上有意义,f(1/2)=-1且任意的x,y∈(-1,1)都有f(x)+f(y)=f((x+y)/(1+xy))
(1)若数列﹛xn﹜满足x1=1/2,x(n+1)=2xn/(1+xn²),求f(xn)
(2)求1+f(1/5)+f(1/11)+..+f(1/(n²+3n+1)+f(1/(n+2))的值.
(1)若数列﹛xn﹜满足x1=1/2,x(n+1)=2xn/(1+xn²),求f(xn)
(2)求1+f(1/5)+f(1/11)+..+f(1/(n²+3n+1)+f(1/(n+2))的值.
(1)∵1+xn²≥2│xn│
∴│2xn/(1+xn²│≤1 又x1=1/2
∴ │2xn/(1+xn²│<1 f(x1)=f(1/2)=-1
而f(x(n+1)),f(x(n+1))=f(2xn/(1+xn²²)=f[(xn+xn)/(1+xnxn)=f(xn)+f(xn)=2f(xn)
∴f(x(n+1))/f(xn)=2 ∴﹛f(xn)﹜是以-1为首项,以2为公比的等比数列,故f(n)=-2^(n-1)
(2)由题设,有f(0)+f(0)=f[(0+0)/(1+0)]=f(0),故f(0)=0
又x∈(-1,1),有f(x)+f(-x)=f[(x-x)/91-x²]]=f(0)=0
得f(-x)=-f(x),故知f(x)在﹙-1,1)上为奇函数. 由
1/(k²+3k+1)=1/[ (k+1)(k+2)-1]
=1/(k+1)(k+2)/[1-1/(k+1 )(k+2)
=[1/(k+1)-1/(k+2)]/[1-1/(k+1)(k+2)]
得f[1/(k²+3k+1)]=f[1/(k+1)+f[-1/(k+2)]=f[1/(k+1)]-f[1/(k+2)]….
于是f[1/(k²+3k+1) ]求和=f(1/2)-f(1/(n+2))=-1-f(1/(n+2))
∴1+f(1/5)+f(1/11)+..+f(1/(n²+3n+1)+f(1/(n+2))=0
龙者轻吟为您解惑,凤者轻舞闻您追问.
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
∴│2xn/(1+xn²│≤1 又x1=1/2
∴ │2xn/(1+xn²│<1 f(x1)=f(1/2)=-1
而f(x(n+1)),f(x(n+1))=f(2xn/(1+xn²²)=f[(xn+xn)/(1+xnxn)=f(xn)+f(xn)=2f(xn)
∴f(x(n+1))/f(xn)=2 ∴﹛f(xn)﹜是以-1为首项,以2为公比的等比数列,故f(n)=-2^(n-1)
(2)由题设,有f(0)+f(0)=f[(0+0)/(1+0)]=f(0),故f(0)=0
又x∈(-1,1),有f(x)+f(-x)=f[(x-x)/91-x²]]=f(0)=0
得f(-x)=-f(x),故知f(x)在﹙-1,1)上为奇函数. 由
1/(k²+3k+1)=1/[ (k+1)(k+2)-1]
=1/(k+1)(k+2)/[1-1/(k+1 )(k+2)
=[1/(k+1)-1/(k+2)]/[1-1/(k+1)(k+2)]
得f[1/(k²+3k+1)]=f[1/(k+1)+f[-1/(k+2)]=f[1/(k+1)]-f[1/(k+2)]….
于是f[1/(k²+3k+1) ]求和=f(1/2)-f(1/(n+2))=-1-f(1/(n+2))
∴1+f(1/5)+f(1/11)+..+f(1/(n²+3n+1)+f(1/(n+2))=0
龙者轻吟为您解惑,凤者轻舞闻您追问.
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
已知函数f(x)在(-1,1)上有意义,f(1/2)=-1且任意的x,y∈(-1,1)都有f(x)+f(y)=f((x+
f(x)是定义在R上的函数,且对任意实数x,y都有 f(x+y)=f(x)+f(y)-1成立,当
已知函数f(x)对于任意xy属于r都有f(x+y)=f(X)+F(Y),且f(2)=4 则f(-1)
已知函数f(x)定义域在R上的函数,且对任意的x,y都有f(x+y)=f(x)+f(y)-1成立.当x>0时,f(x)>
已知函数f(x)是定义在R+上的函数,对于任意x,y属于R+,都有f(x)+f(y)=f(x*y),且当仅且x>1时,f
已知y=f(x)是定义在R上的函数,且对任意的x∈R都有f(x+1)=f(x)+1/1-f(x)成立,若f(2)=1-√
已知y=f(x)是定义在R上的函数,且对任意x∈R,都有:f(x+2)=[1-f(x)]/[1+f(x)],又f(1)=
已知函数f(x)对任意的实数x,y都有:f(x+y)=f(x)+f(y)-1,且x
求函数奇偶性定义在r上的函数f x 对任意的x y∈R都有f(x+y)=f(x)+f(y)+1成立求证:已知F(x)=f
已知函数f(t)满足对任意实数x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2
我的解法错在哪了?已知函数f(x)对于任意实数x,y都有f(x+y)=f(x)+2y(x+y),且f(1)=1,求f(x
已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x