作业帮 > 数学 > 作业

如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上.求证:BC=AB+DC.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 07:51:32
如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上.求证:BC=AB+DC.
如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上.求证:BC=AB+DC.
证明:延长BE交CD的延长线于点F,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∵AB∥CD,
∴∠F=∠ABE,∠A=∠FDA,
∴∠F=∠CBE,
∴CF=BC,
∵CE平分∠BCD,
∴BE=EF(三线合一)),
在△ABE和△DFE中,

∠F=∠ABE
EB=EF
∠AEB=∠DEF,
∴△ABE≌△FDE(ASA),
∴FD=AB,
∵CF=DF+CD,
∴CF=AB+CD,
∴BC=AB+CD.