作业帮 > 数学 > 作业

如图9所示,BD、BE分别是∠ABC与它的邻补角∠ABP的角平分线,AE⊥BE,AD⊥BD,E、D为垂足,试说明四边形A

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 06:05:44
如图9所示,BD、BE分别是∠ABC与它的邻补角∠ABP的角平分线,AE⊥BE,AD⊥BD,E、D为垂足,试说明四边形AEBD是矩形.(图插不上来)
如图9所示,BD、BE分别是∠ABC与它的邻补角∠ABP的角平分线,AE⊥BE,AD⊥BD,E、D为垂足,试说明四边形A
∵BD、BE是角平分线,∠ABC与∠ABP是邻补角
∴∠ABE+∠ABD=1/2*180°=90°=∠EBD
又AE⊥BE,AD⊥BD,
∴∠AEB=90°,∠ADB=90°
∴在四边形AEBD中,四个内角都是90°,即AEBD是矩形