一道编码理论里面的题目~
来源:学生作业帮 编辑:神马作文网作业帮 分类:英语作业 时间:2024/11/11 03:50:14
一道编码理论里面的题目~
Let x,y be codewords in a self-orthogonal binary code.Suppose the weights of x and y are both divisible by 4.Show that the weight of x + y is also a multiple of 4.
Let x,y be codewords in a self-orthogonal binary code.Suppose the weights of x and y are both divisible by 4.Show that the weight of x + y is also a multiple of 4.
由于x,y都是二元码,有公式wt(x+y)=wt(x)+wt(y)-2wt(x*y),由于x,y同属于self-orthogonal binary code,所以,x*y=0,即:wt(x*y)=0;所以:wt(x+y)=wt(x)+wt(y),wt(x),wt(y)都能被4整除,左边也就也能被4整除.
再问: x*y=0?,����������ɡ�
再答: ����x,yͬ����self-orthogonal binary code, xy=0(�������������)����x=(x1,x2,...,xn),y=(y1,y2,...,yn)����x1y1+x2y2+...+xnyn=0��Ȼ��x*y=(x1y1,x2y2,...,xnyn)�����Կ�֪x*y�з���λ�ĸ����Ȼ��ż��Ҳ����˵wt(x*y)=ż����2wt(x*y)���Ա�4�������ľͺ�����һ���ˡ�������Ӧ��ûɶ�����ˡ���
再问: x*y=0?,����������ɡ�
再答: ����x,yͬ����self-orthogonal binary code, xy=0(�������������)����x=(x1,x2,...,xn),y=(y1,y2,...,yn)����x1y1+x2y2+...+xnyn=0��Ȼ��x*y=(x1y1,x2y2,...,xnyn)�����Կ�֪x*y�з���λ�ĸ����Ȼ��ż��Ҳ����˵wt(x*y)=ż����2wt(x*y)���Ա�4�������ľͺ�����һ���ˡ�������Ӧ��ûɶ�����ˡ���