设F(X),G(X)是数域K上的不可约多项式,存在C属于C,若X-C整除F(X),G(X),则G(X)整除F(X
设F(X),G(X)是数域K上的不可约多项式,存在C属于C,若X-C整除F(X),G(X),则G(X)整除F(X
设P(X)G(X)都是f(x)上的不可约多项式.证明:若 p(x)整除g(x),则p(x)=cg(x),这里c(不为0)
设f(x),g(x)为数域f上的不全为零多项式.证明[f(x),g(x)]=[f(x),f(x)+g(x)]
设f(x),g(x),h(x)都是多项式,若 (f(x),g(x))=1,证明(f(x)+g(x)h(x),g(x))=
已知两个函数f(x)=7x^2-28x-c,g(x)=2x^3+4x^2-40x若存在x属于[-3,3]有f(x)≤g(
设f(x),g(x),h(x)都是多项式,证明::(f(x),g(x))=(f(x)-g(x)h(x),g(x))
证明若在区间(a,b)内有f'(x)=g'(x),则f(x)=g(x)+c
证明设f:X→Y,g:Y→X,若对任意x属于X,必有g[f(x)]=x,则f是单射,g是满射
设f(x)存在反函数,g(x)=f(2x),则g(x)的反函数等于?
设F(x)=g(x)f(x),f(X)在X=a处连续但是不可导,g(X)导数存在,则g(a)=0是F(X)在X=a处可导
设f(x),g(x),在[a,b]上连续,在(a,b)上可导,且f(x)g(x)的导数相等,证明是否存在常数C,使得f(
设f(x)与g(x)均为可导函数,且有g(x)=f(x+c),其中c为常数,利用倒数的定义证明g’(x)=f’(x+c)