作业帮 > 综合 > 作业

马氏距离在MATLAB中的代码,用代码表示公式.公式如图.

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/12 15:12:30
马氏距离在MATLAB中的代码,用代码表示公式.公式如图.
i:第几列 k:层数 L:列数 D:两样本之间的距离 x:变量
马氏距离在MATLAB中的代码,用代码表示公式.公式如图.
function d = mahalanobis(X, Mu, C)
  %MAHALANOBIS Mahalanobis distance.
  % D = MAHALANOBIS(X, MU, C) returns the Mahalanobis distance between
  % the length p vectors X and MU given the p by p covariance matrix
  % C. If omitted, it is assumed that C is the identity matrix(单位矩阵/恒等矩阵)
  % EYE(p). If either X or MU is an n by p matrix, D will be returned
  % as an n by g matrix where n is the number of rows in X and g is
  % the number of rows in MU where each entry i, j corresponds to the
  % mahalanobis distance between row i of X and row j of MU. If MU is
  % simply 0, it is treated as the origin from which Mahalanobis
  % distance to X is calculated. C must be a positive, definite,
  % symmetric matrix.
  %
  % The Mahalanobis distance between vectors X(i,:) and MU(j,:) is
  % defined as:
  %
  % D(i,j) = ((X(i,:) - MU(j,:))'*INV(C)*(X(i,:) - MU(j,:))).^(1/2)
  % Copyright (c) 1999 Michael Kiefte.
  % $Log$
  error(nargchk(2, 3, nargin))
  if isempty(X) | ~isa(X, 'double') | ~isreal(X) | ...
  any(any(isnan(X) | isinf(X)))
  error(['X must be a vector or matrix of real, finite numeric' ...
  ' doubles.'])
  elseif length(X) == prod(size(X))
  X = X(:)';
  elseif ndims(X) ~= 2
  error('If X is a matrix, it must be a 2-d array.')
  end
  [n p] = size(X);
  if isempty(Mu) | ~isa(Mu, 'double') | ~isreal(Mu) | ...
  any(any(isnan(Mu) | isinf(Mu)))
  error(['Mu must be a vector or matrix of real, finite numeric' ...
  ' doubles.'])
  elseif length(Mu) == prod(size(Mu))
  Mu = Mu(:)';
  elseif ndims(Mu) ~= 2
  error('If MU is a matrix, it must be a 2-d array.')
  end
  if length(Mu) == 1 & Mu == 0
  Mu = zeros(1, p);
  elseif size(Mu, 2) ~= p
  error('Number of features in MU and X must be the same.')
  end
  g = size(Mu, 1);
  if ~isempty(C)
  if ~isa(C, 'double') | ~isreal(C) | ndims(C) ~= 2 | ...
  any(any(isnan(C) | isinf(C)))
  error('C must be a matrix of real, finite numeric doubles.')
  elseif any(size(C) ~= p)
  error(['Number of rows and columns in C must match number of' ...
  ' features in X and MU.'])
  end
  try
  S = inv(chol(C));
  catch
  error(['Covariance matrix C must be positive, definite,' ...
  ' symmetric.'])
  end
  Xs = X*S;
  Ms = Mu*S;
  else
  Xs = X;
  Ms = Mu;
  end
  d = sqrt(repmat(sum(Xs.^2, 2), 1, g) - 2*Xs*Ms' + ...
  repmat(sum(Ms'.^2), n, 1));