1、P是双曲线x^2/a^2-y^2/b^2=1上的点,F1,F2是其焦点,双曲线的离心率为5/4,且∠F1PF2=90
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 10:02:06
1、P是双曲线x^2/a^2-y^2/b^2=1上的点,F1,F2是其焦点,双曲线的离心率为5/4,且∠F1PF2=90°,若△F1PF2的面积是9,则a+b(a>0,b>0)的值为
2、已知F1,F2是椭圆x^2/4+y^2=1的左右焦点,AB为其过点F2且斜率为1的弦,则向量F1A•向量F1B的值为
2、已知F1,F2是椭圆x^2/4+y^2=1的左右焦点,AB为其过点F2且斜率为1的弦,则向量F1A•向量F1B的值为
第一题:设P点坐标为(x,y)
1、由双曲线的离心率为5/4可得:b/a=1/2
2、由∠F1PF2=90°,有y^2/(x^2-(a+b)^2)=-1,顾及x^2/a^2-y^2/b^2=1及b/a=1/2,可解得y^2=a^2/20
3、△F1PF2的面积:c*|y|=a^2/4=9,所以a=6,b=3,a+b=9
第二题:
解得A、B两点的坐标分别为[xa = (4/5)*sqrt(3)+(2/5)*sqrt(2),ya=-(1/5)*sqrt(3)+(2/5)*sqrt(2)],[xb = (4/5)*sqrt(3)-(2/5)*sqrt(2),yb=-(1/5)*sqrt(3)-(2/5)*sqrt(2)]
向量的坐标表示:F1A={(9/5)*sqrt(3)+(2/5)*sqrt(2),-(1/5)*sqrt(3)+(2/5)*sqrt(2)},F1B={(9/5)*sqrt(3)-(2/5)*sqrt(2),-(1/5)*sqrt(3)-(2/5)*sqrt(2)}
所以向量F1A•向量F1B的值为:F1A•F1B=(8/5)*sqrt(3)+(4/5)*sqrt(2)
1、由双曲线的离心率为5/4可得:b/a=1/2
2、由∠F1PF2=90°,有y^2/(x^2-(a+b)^2)=-1,顾及x^2/a^2-y^2/b^2=1及b/a=1/2,可解得y^2=a^2/20
3、△F1PF2的面积:c*|y|=a^2/4=9,所以a=6,b=3,a+b=9
第二题:
解得A、B两点的坐标分别为[xa = (4/5)*sqrt(3)+(2/5)*sqrt(2),ya=-(1/5)*sqrt(3)+(2/5)*sqrt(2)],[xb = (4/5)*sqrt(3)-(2/5)*sqrt(2),yb=-(1/5)*sqrt(3)-(2/5)*sqrt(2)]
向量的坐标表示:F1A={(9/5)*sqrt(3)+(2/5)*sqrt(2),-(1/5)*sqrt(3)+(2/5)*sqrt(2)},F1B={(9/5)*sqrt(3)-(2/5)*sqrt(2),-(1/5)*sqrt(3)-(2/5)*sqrt(2)}
所以向量F1A•向量F1B的值为:F1A•F1B=(8/5)*sqrt(3)+(4/5)*sqrt(2)
1、P是双曲线x^2/a^2-y^2/b^2=1上的点,F1,F2是其焦点,双曲线的离心率为5/4,且∠F1PF2=90
F1、F2为双曲线x^2/4-y^2=-1的两个焦点,点P在双曲线上,且角F1PF2=90度,则三角形F1PF2的面积是
双曲线x^2/16-y^2/9=1上有点P,F1,F2是双曲线的焦点 且∠F1PF2=π/3,求△PF1F2面积
双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且∠F1PF2=60°,S△F1PF2=12√3,求双曲线的
已知双曲线想x^2/a^2-y^2=1(a>0)的两焦点分别F1,F2.P为双曲线上的点,且∠F1PF2=90°,求/P
【【设F1 F2是双曲线 x^2/9 - y^2/4 = 1的两个焦点,点P是双曲线上任意一点,且∠F1PF2=30°,
双曲线x^2÷a^2-y^2÷b^2=1的左右焦点为F1和F2,点P在双曲线上,已知PF1=4,求双曲线的离心率的最大值
设F1和F2为双曲线x平方/4-y平方=1的两个焦点,点P在双曲线上,且满足角F1PF2=π/2,则三角形F1PF2的面
双曲线的焦点在x轴上,离心率为2,F1,F2为他的左右焦点,点p是双曲线上一点,且角F1PF2等于60度,
已知F1,F2双曲线(X^2 /4) - Y^2=1的两个焦点,点在双曲线上且满足角F1PF2=90度,求三角形F1PF
已知F1,F2双曲线(X^2 /4) - Y^2=1的两个焦点,点在双曲线上且满足角F1PF2=90度,求三角形F1PF
设F1,F2为双曲线x²/4-y²=1的两个焦点,点P在双曲线上,且满足角F1PF2=90