作业帮 > 数学 > 作业

√(a^2+b^2)+√(a^2+(1-b)^2)+√(b^2+(1-a)^2) 最小值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 03:21:21
√(a^2+b^2)+√(a^2+(1-b)^2)+√(b^2+(1-a)^2) 最小值
√(a^2+b^2)+√(a^2+(1-b)^2)+√(b^2+(1-a)^2) 最小值
设点P为(a,b) a、b解为任意实数
那么√(a^2+b^2)+√(a^2+(1-b)^2)+√(b^2+(1-a)^2)
表示P到(0,0)、(1,0)、(0,1)的距离和.
不难证明当P在原点时距离和最小(如果不会我可以再给你解释).
此时a=b=0,所以最小值为2.