求以椭圆x^2/8+y^2/5=1以椭圆的顶点为焦点的双曲线的方程
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 12:02:56
求以椭圆x^2/8+y^2/5=1以椭圆的顶点为焦点的双曲线的方程
由椭圆方程a=2√2;b=√5;从而 c=√(a^2-b^2)==√3;
椭圆的四个顶点为:A1(-2√2,0)、A2(2√2,0);B1(0,-√5)、B2(0,√5);
因此可知椭圆的焦点为:F1(-2√2,0)、F2(2√2,0);
或 F1(0,-√5)、F2(0,√5);
1、若补充条件:以椭圆的焦点为顶点,则x轴为实轴,
a'=c=√3;c'= a = 2√2;
由于双曲线 c'^2 = a'^2+b'^2,从而b'^2 = c'^2 - b'^2 = 5
双曲线方程为:x^2/8 - y^2/5=1
2、若无其他补充条件,则a‘,b' 存在对应关系,具体方程依a',b'取值而定;
(1) 以 F1(-2√2,0)、F2(2√2,0)为焦点时,实轴为x轴,c'=2√2;设半实轴长为a‘ (a'
椭圆的四个顶点为:A1(-2√2,0)、A2(2√2,0);B1(0,-√5)、B2(0,√5);
因此可知椭圆的焦点为:F1(-2√2,0)、F2(2√2,0);
或 F1(0,-√5)、F2(0,√5);
1、若补充条件:以椭圆的焦点为顶点,则x轴为实轴,
a'=c=√3;c'= a = 2√2;
由于双曲线 c'^2 = a'^2+b'^2,从而b'^2 = c'^2 - b'^2 = 5
双曲线方程为:x^2/8 - y^2/5=1
2、若无其他补充条件,则a‘,b' 存在对应关系,具体方程依a',b'取值而定;
(1) 以 F1(-2√2,0)、F2(2√2,0)为焦点时,实轴为x轴,c'=2√2;设半实轴长为a‘ (a'
求以椭圆x^2/8+y^2/5=1的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程
求以椭圆x^2/8+y^2/5=1以椭圆的顶点为焦点的双曲线的方程
求以椭圆x^2/16+y^2/25=1的焦点为顶点,以椭圆的顶点为焦点的双曲线方程
求以双曲线X^2/3一y^2/5=1的顶点为焦点,焦点为顶点的椭圆方程?
圆锥曲线方程.求以椭圆X的平方/16+Y的平方/9=1的两个顶点为焦点,以椭圆焦点为顶点的双曲线方程.
求以椭圆x的平方除以16+y的平方除以25=1的焦点为顶点,以椭圆顶点为焦点的双曲线的方程
求以椭圆x^2/16+y^2/9=1的焦点为顶点,以其顶点为焦点的双曲线的标准方程
以椭圆x^2/16+y^2/9=1的顶点为焦点,且过椭圆焦点的双曲线的标准方程为?
求以椭圆x2/8+y2/5=1的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.
双曲线以椭圆x/9+y/25=1的焦点为焦点,它的离心率是椭圆离心率的2倍求双曲线的方程
1.求以椭圆X方/8+Y方/5=1焦点与长轴的端点分别为顶点与焦点的双曲线方程.
求以椭圆x^2/4+y^2/12=1的焦点为顶点,且以此椭圆在Y上的顶点为焦点的双曲线的标准方程