作业帮 > 数学 > 作业

已知函数f(x)的定义域为R,且对任意x属于Z,都有f(x)=f(x-1)+f(x+1).若f(-1)=2,f(1)=3

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 06:58:29
已知函数f(x)的定义域为R,且对任意x属于Z,都有f(x)=f(x-1)+f(x+1).若f(-1)=2,f(1)=3,则f(2012)+f(-2012)=
要详解,谢谢~~~
已知函数f(x)的定义域为R,且对任意x属于Z,都有f(x)=f(x-1)+f(x+1).若f(-1)=2,f(1)=3
用迭代法,求证f(x)是以6 为周期的周期函数.
在 f(x)=f(x-1)+f(x+1) (1)
中用x+1 替换x,得
f(x+1)=f(x)+f(x+2) (2)
(1)+(2)得
f(x+2)=-f(x-1) (3)
在(3)中用x+1替换x,得
f(x+3)=-f(x) (4)
在(4)中用 x+3替换 x,得
f(x+6)=-f(x+3) (5)
对比 (4),(5),得
f(x+6)=f(x)
在(1)中,令 x=0,得 f(0)=f(-1)+f(1)=5
令 x=1,得 f(1)=f(0)+f(2),f(2)=-2
令 x=-1,得 f(-1)=f(-2)+f(0),f(-2)=-3
由于 2012=335×6+2
所以 f(2012)+f(-2012)=f(2)+(f(-2)=-5